古脊椎动物学报 ›› 2019, Vol. 57 ›› Issue (1): 51-76.DOI: 10.19615/j.cnki.1000-3118.180803
毛方园1,2(), 郑晓廷3,4, 王孝理3,4, 王元青1,2, 毕顺东5, 孟津6,1
收稿日期:
2018-03-30
出版日期:
2019-01-20
发布日期:
2019-01-20
基金资助:
MAO Fang-Yuan1,2(), ZHENG Xiao-Ting3,4, WANG Xiao-Li3,4, WANG Yuan-Qing1,2, BI Shun-Dong5, MENG Jin6,1
Received:
2018-03-30
Published:
2019-01-20
Online:
2019-01-20
Contact:
*maofangyuan@ivpp.ac.cn摘要:
贼兽是一已绝灭的哺乳动物型类,它们与多瘤齿兽和相关类群的系统关系尚存争议,很大的原因在于这类动物的牙齿和头骨形态的特征呈哺乳动物冠群和似哺乳动物之间的镶嵌状态。通过显微CT和平板CL技术,对辽宁省侏罗纪燕辽生物群4种真贼兽的8件标本的牙齿形态、磨损状况和牙齿替换信息进行观察和描述,并与贼兽已发表属种牙齿替换进行对比,对二出齿这一被认为可能与哺乳和亲代养育行为演化有关的重要特征在贼兽中的存在与否进行了讨论。结果显示,所有贼兽的颊齿数恒定,在任何萌出的臼齿下均无齿胚保存,且无替换证据,可以确定为单出齿。前臼齿具一次替换,为典型的哺乳动物二出齿。所有真贼兽只有一对下门齿,一对上门齿,仅玲珑仙兽例外,其在增大的I2内侧,有一残留的I1。神兽和仙兽上下颌骨中,都不具有门齿牙胚,而树贼兽和翔齿兽的上下颌骨中,都具有替换牙胚。其中上门齿齿胚具2-3个齿尖,位于萌出的乳门齿背后方;下门齿齿胚根部始于m2下方,齿尖向前延伸至乳门齿的后背方;牙胚随着不同个体发育阶段向前推进的位置不同,较成熟的个体,齿根有逐渐愈合的现象。门齿的替换应晚于最后臼齿的完全萌出,显示了明显的滞后性,相比其他贼兽的门齿替换应为异时发育。牙胚的形态、相对颊齿大小和后端位置与神兽和仙兽已萌出的门齿更为相近,而较树贼兽和翔齿兽已萌出的门齿显得更大且更复杂,因此神兽和仙兽的门齿更可能为恒齿,贼兽类的门齿则更可能为二出齿。树贼兽和翔齿兽极度膨大的前臼齿很可能加长和推迟门齿的替换过程,甚至影响了替换的发生,同时也在一定程度上抑制了最后臼齿的萌出和功能作用。树贼兽和翔齿兽的这些特征显示它们可能具有某种特殊的食性,更倾向于强调前臼齿对食物的摄取和咀嚼处理。而贼兽具有的典型的哺乳动物二出齿特征、稳定的齿式和高度分化的牙齿等,增加了其为哺乳动物的可能性。
中图分类号:
毛方园, 郑晓廷, 王孝理, 王元青, 毕顺东, 孟津. 侏罗纪燕辽生物群贼兽类牙齿发育双出齿和异时发育的证据. 古脊椎动物学报, 2019, 57(1): 51-76.
MAO Fang-Yuan, ZHENG Xiao-Ting, WANG Xiao-Li, WANG Yuan-Qing, BI Shun-Dong, MENG Jin. Evidence of diphyodonty and heterochrony for dental development in euharamiyidan mammals from Jurassic Yanliao Biota. Vertebrata Palasiatica, 2019, 57(1): 51-76.
Fig. 1 Tooth replacement and identification of Arboroharamiya jenkinsi (holotype, STM 33-9) A, B. the left mandible in medial and optic view (A) and in CL view (B), showing that a tooth germ is dorsal to the root of the enlarged incisor in the dentary bone; C. upper incisor germ within a fragmentary maxilla, revealed by CL scan; D. lm2 in a CL image slice; E. rm2 in labial view; F. reconstruction of the rM2 from CL scan. Red arrows point to tooth germs
Fig. 2 Tooth condition of Arboroharamiya allinhopsoni (HG-M 017, holotype) A. lateral view of the left partial skull, where the lower incisor germ is exposed at the breakage, posterodorsal to the root of the erupted incisor; B. CL image showing the left and right lower incisor germs in the jaws; C. optic image of the lateral view of partial right skull, showing the barely worn cheek teeth; D. CL image showing the two-cusped upper incisor germ in the maxilla, the unerupted two ultimate lower molars (m2), and the unerupted left ultimate upper molar (M2). Red arrows point to tooth germs
Fig. 3 Tooth condition of Arboroharamiya sp. (IVPP V 18954, new specimen) A, D. optic images of the upper incisor germ (A) with the closer view (D) showing the dentition and the exposed mesial cusp; B, C. CL images showing the three cusped upper incisor germ (I2), two cusped upper incisor (dI2), and the fully formed ultimate molars. Red arrows point to tooth germs
Fig. 4 Tooth condition of Xianshou linglong (IVPP V 16707, holotype) A, B. optic image (A) and CL image (B) showing the three cusped second upper incisor (I2) and the single cusped first upper incisor (I1); C. CL image showing the small single cusped I1; D. CL image showing the wear condition of the cheek teeth
Fig. 5 Tooth condition of Shenshou lui (LDNHMF 2001, holotype) A. CL image showing the two cusped upper incisors, absence of tooth germ, and wear condition of cheek teeth; B, C. optic images showing wear facets of the upper incisors (B) and the left lower cheek teeth (C)
Fig. 6 Tooth condition of Shenshou lui (WGMV-001, paratype 1) A, B. CL images showing the two cusped upper incisors, closed root of the lower incisor, absence of tooth germ, and wear condition of the cheek teeth; C, D. optic images showing the wear condition of the right lower cheek teeth (C) and the left lower cheek teeth (D)
Fig. 7 Tooth condition of Shenshou lui (JZT-CK005, paratype 2) A, B. optic (A) and CL (B) images showing the three cusped upper incisor and no teeth germ under any tooth locus; C, D. optic (C) and CL (D) images showing the deep wear facet of the cheek teeth
Fig. 8 Tooth condition of Shenshou lui (JZT-D061, paratype 3) A, B. CL images showing three cusped upper incisors and no tooth germ under any tooth locus; C, D. CT reconstruction (C) and SEM (D) images showing wear facets of the cheek teeth
Fig. 9 Diagrams comparing reconstruction of tooth development of euharamiyidans A. Shenshou lui; B. Xianshou linglong; C. Arboroharamiya allinhopsoni; D. A. jenkinsi The reconstruction of S. lui is based on LDNHMF 2001, WGMV-001, JZT-D 061, and JZT-CK 005; X. linglong on V 16707A; A. allinhopsoni on HG-M 017; A. jenkinsi on STM 33-9 The upper teeth of A. jenkinsi were preserved in isolation so that the reconstruction should be viewed as an interpretation of the authors, with references of tooth developments in other species. Not to scale
1 |
Abdala F, Jasinoski S C, Fernandez V , 2013. Ontogeny of the Early Triassic cynodont Thrinaxodon liorhinus (Therapsida): dental morphology and replacement. J Vert Paleont, 33(6):1408-1431
DOI URL |
2 |
Anders U, von Koenigswald W, Ruf I et al., 2011. Generalized individual dental age stages for fossil and extant placental mammals. Paläontol Z, 85(3):321-339
DOI URL |
3 | Archibald J D , 1982. A study of mammalia and geology across the Cretaceous-Tertiary boundary in Garfield County, Montana. Univ Calif Publ Geol Sci, 122:1-286 |
4 |
Averianov A O, Lopatin A V, Krasnolutskii S A , 2011. The first haramiyid (Mammalia, Allotheria) from the Jurassic of Russia. Dokl Biol Sci, 437(1):103-106
DOI URL |
5 |
Bi S D, Wang Y Q, Guan J et al., 2014. Three new Jurassic euharamiyidan species reinforce early divergence of mammals. Nature, 514:579-584
DOI URL |
6 | Brink A A , 1956. Speculations on some advanced mammalian characteristics in higher mammal-like reptiles. Palaeontol Afr, 4:77-95 |
7 | Butler P M , 2000. Review of the early allotherian mammals. Acta Palaeontol Pol, 45(4):317-342 |
8 | Butler P M, Hooker J J , 2005. New teeth of allotherian mammals from the English Bathonian, including the earliest multituberculates. Acta Palaeontol Pol, 50(2):185-207 |
9 | Butler P M, MacIntyre G T , 1994. Review of the British Haramiyidae (? Mammalia, Allotheria), their molar occlusion and relationships. Philos Ttans R Soc London, Ser B, 345:433-458 |
10 | Cifelli R L , 1994. Therian mammals of the Terlingua Local Fauna (Judithian), Aguja Formation, Big Bend of the Rio Grande, Texas. Contrib Geol Univ Wyo, 30(2):117-136 |
11 |
Cifelli R L , 1999. Therian teeth of unusual design from the medial Cretaceous (Albian-Cenomanian) Cedar Mountain Formation, Utah. J Mamm Evol, 6(3):247-270
DOI URL |
12 |
Cifelli R L, de Muizon C , 1998. Dentition and jaw of Kokopellia juddi, a primitive marsupial or near marsupial from the medial Cretaceous of Utah. J Mamm Evol, 4(4):241-258
DOI URL |
13 |
Clark J M, Hopson J A , 1985. Distinctive mammal-like reptile from Mexico and its bearing on the phylogeny of the Tritylodontidae. Nature, 315:398-400
DOI URL |
14 | Clemens W A , 1966. Fossil mammals from the type Lance Formation Wyoming. Part II. Marsupialia. Univ Calif Publ Geol Sci, 62:1-122 |
15 | Clemens W A , 1980. Rhaeto-Liassic mammals from Switzerland and West Germany. Zitteliana, 5:51-92 |
16 |
Clemens W A , 2007. Early Jurassic allotherians from South Wales (United Kingdom). Foss Rec, 10(1):50-59
DOI URL |
17 |
Clemens W A, Martin T , 2014. Review of the non-tritylodontid synapsids from bone beds in the Rhaetic Sandstone, southern Germany. Paläontol Z, 88(4):461-479
DOI URL |
18 | Crompton A W , 1963. Tooth replacement in the cynodont Thrinaxodon liorhinus Seeley. Ann S Afr Mus, 46:479-521 |
19 | Crompton A W , 1972. Postcanine occlusion in cynodonts and tritylodonts. Bull Br Mus (Nat Hist) Geol, 21:30-71 |
20 | Crompton A W , 1995. Masticatory function in nonmammalian cynodonts and early mammals. In: Thomason J J ed. Functional Morphology in Vertebrate Paleontology. Cambridge: Cambridge University Press. 55-75 |
21 | Crompton A W, Hylander W L , 1986. Changes in mandibular function following the acquisition of a dentary-squamosal joint. In: Hotton N, MacLean P D III, Roth J J et al. eds. The Ecology and Biology of Mammal-like Reptiles. Washington D C: Smithsonian Institution Press. 263-282 |
22 | Crompton A W, Luo Z X , 1993. Relationships of the Liassic mammals Sinoconodon, Morganucodon, and Dinnetherium. In: Szalay F S, Novacek M J, McKenna M C eds. Mammal Phylogeny: Mesozoic Differentiation, Multituberculates, Monotremes, Early Therians, and Marsupials. New York: Springer-Verlag. 30-44 |
23 | Cui G H, Sun A L , 1987. Postcanine root system of tritylodonts. Vert PalAsiat, 25(4):245-259 |
24 | Edmund A G , 1960. Tooth replacement phenomena in the lower vertebrates. R Ontario Mus Life Sci Contrib, 52:1-190 |
25 |
Ensom P C, Sigogneau-Russell D , 2000. New symmetrodonts (Mammalia, Theria) from the Purbeck Limestone Group, Early Cretaceous of southern England. Cretaceous Res, 21(6):767-779
DOI URL |
26 | Fourie S , 1963. Tooth replacement in the gomphodont cynodont Diademodon. S Afr J Sci, 59:211-213 |
27 |
Fox R C , 1981. Mammals from the Upper Cretaceous Oldman Formation, Alberta. V. Eodelphis Matthew, and the evolution of the Stagodontidae (Marsupialia). Can J Earth Sci, 18(2):350-365
DOI URL |
28 |
Gill P , 2004. A new symmetrodont from the Early Cretaceous of England. J Vert Paleont, 24(3):748-752
DOI URL |
29 | Gow C E , 1980. The dentitions of the Trithelodontidae (Therapsida: Cynodontia). Proc R Soc Lond B Biol, 208:461-481 |
30 | Gow C E , 1985. Apomorphies of the Mammalia. S Afr J Sci, 81:558-560 |
31 |
Greenwald N S , 1988. Patterns of tooth eruption and replacement in multituberculate mammals. J Vert Paleont, 8(3):265-277
DOI URL |
32 | Hahn G , 1973. Neue Zähne von Haramiyiden aus der deutschen Ober-Trias und ihre Beziehungen zu den Multituberculaten. Palaeontogr Abt A, 142:1-15 |
33 | Hahn G, Hahn R , 2006. Evolutionary tendencies and systematic arrangement in the Haramiyida (Mammalia). Geol Palaeontol, 40:173-193 |
34 | Hahn G, Sigogneau-Russell D, Wouters G , 1989. New data on Theroteinidae-their relations with Paulchoffatiidae and Haramiyidae. Geol Paleontol, 23:205-215 |
35 |
Han G, Meng J , 2016. A new spalacolestine mammal from the Early Cretaceous Jehol Biota and implications for the morphology, phylogeny, and palaeobiology of Laurasian ‘symmetrodontans’. Zool J Linn Soc, 178(2):343-380
DOI URL |
36 |
Han G, Mao F Y, Bi S D et al., 2017. A Jurassic gliding euharamiyidan mammal with an ear of five auditory bones. Nature, 551:451-456
DOI URL |
37 |
Heinrich W D , 1999. First haramiyid (Mammalia, Allotheria) from the Mesozoic of Gondwana. Foss Rec, 2(1):159-170
DOI URL |
38 |
Heinrich W D , 2001. New records of Staffia aenigmatica (Mammalia, Allotheria, Haramiyida) from the Upper Jurassic of Tendaguru in southeastern Tanzania, East Africa. Foss Rec, 4(1):239-255
DOI URL |
39 | Hennig E , 1922. Die Säugerzähne des wüttembergischen Rhät-Lias-Bonebeds. Neues Jahrb Geol Paläeontol, Abh, 46:181-267 |
40 | Hopson J A , 1965. Tritylodontid therapsids from Yunnan and the cranial morphology of Bienotherium. Ph. D theis. Chicago: University of Chicago. 1-295 |
41 | Hopson J A , 1971. Postcanine replacement in the gomphodont cynodonts Diademodon. In: Kermack D M, Kermack K A eds. Early Mammals. London: Academic Press. 1-21 |
42 |
Hopson J A , 1973. Endothermy, small size, and the origin of mammalian reproduction. Am Nat, 107:446-452
DOI URL |
43 | Hopson J A, Crompton A W , 1969. Origin of mammals. In: Dobzhansky T, Hecht M K, Steere W C eds. Evolutionary Biology, Vol. 3. New York: Appleton-Century- Crofts. 15-72 |
44 |
Huttenlocker A K, Grossnickle D M, Kirkland J I et al., 2018. Late-surviving stem mammal links the lowermost Cretaceous of North America and Gondwana. Nature, 558:108-112
DOI PMID |
45 |
Jenkins F A Jr , 1990. Monotremes and the biology of Mesozoic mammals. Neth J Zool, 40:5-31
DOI URL |
46 | Jenkins F A Jr, Schaff C R , 1988. The Early Cretaceous mammal Gobiconodon (Mammalia, Triconodonta) from the Cloverly Formation in Montana. J Vert Paleont, 8(1):1-24 |
47 |
Jenkins F A, Crompton A, Downs W R , 1983. Mesozoic mammals from Arizona: new evidence on mammalian evolution. Science, 222:1233-1235
DOI URL |
48 |
Jenkins F A, Gatesy S M, Shubin N H et al., 1997. Haramiyids and Triassic Mammalian Evolution. Nature, 385:715-718
DOI URL |
49 |
Ji Q, Luo Z X, Zhang X L et al., 2009. Evolutionary development of the middle ear in Mesozoic therian mammals. Science, 326:278-281
DOI URL |
50 | Kermack D M, Kermack K A , 1984. The Evolution of Mammalian Characters. London: Croom Helm. 1-149 |
51 |
Kermack K A, Mussett F, Rigney H W , 1973. The lower jaw of Morganucodon. Zool J Linn Soc, 53(2):87-175
DOI URL |
52 |
Kermack K A, Mussett F, Rigney H W , 1981. The skull of Morganucodon. Zool J Linn Soc, 71(1):1-158
DOI URL |
53 | Kielan-Jaworowska Z, Dashzeveg D , 1998. Early Cretaceous amphilestid (“triconodont”) mammals from Mongolia. Acta Palaeontol Pol, 43(3):413-438 |
54 | Kielan-Jaworowska Z, Cifelli R L, Luo Z X , 2004. Mammals from the Age of Dinosaurs: Structure, Relationships, and Paleobiology. New York: Columbia Univeristy Press. 1-630 |
55 |
Krause D W, Hoffmann S, Wible J R et al., 2014. First cranial remains of a gondwanatherian mammal reveal remarkable mosaicism. Nature, 515:512-517
DOI PMID |
56 | Kühne W G , 1956. The Liassic therapsid Oligokyphus. London: British Museum (Natural History). 1-149 |
57 | Lillegraven J A , 1969. Latest Cretaceous mammals of upper part of Edmonton Formation of Alberta, Canada, and review of marsupial-placental dichotomy in mammalian evolution. Univ Kansas Paleontol Contrib, 50:1-122 |
58 | Liu J, Sues Hans-Dieter , 2010. Dentition and tooth replacement of Boreogomphodon (Cynodontia: Traversodontidae) from the Upper Triassic of North Carolina, USA. Vert PalAsiat, 48(3):169-184 |
59 |
Lopatin, A, Averianov A , 2015. Gobiconodon (Mammalia) from the Early Cretaceous of Mongolia and revision of Gobiconodontidae. J Mamm Evol, 22(1):17-43
DOI URL |
60 | Luckett W P , 1985. Superordinal and intraordinal affinities of rodents: developmental evidence from the dentition and placentation. In: Luckett W P, Hartenberger J L eds. Evolutionary Relationships Among Rodents: a Multidisciplinary Analysis. New York: Plenum Press. 227-276 |
61 | Luckett W P , 1993. An ontogenetic assessment of dental homologies in therian mammals. In: Szalay F S, Novacek M J, McKenna M C eds. Mammal Phylogeny: Mesozoic Differentiation, Multituberculates, Monotremes, Early Therians, and Marsupials. New York: Springer-Verlag. 182-204 |
62 | Luo Z X , 1994. Sister-group relationships of mammals and transformations of diagnostic mammalian characters. In: Fraser N C, Sues H D eds. In the Shadow of the Dinosaurs-Early Mesozoic Tetrapods. Cambridge: Cambridge University Press. 98-128 |
63 |
Luo Z X , 2007. Transformation and diversification in the early mammalian evolution. Nature, 450:1011-1019
DOI URL |
64 |
Luo Z X, Wible J R , 2005. A Late Jurassic digging mammal and early mammalian diversification. Science, 308:103-107
DOI URL |
65 | Luo Z X, Wu X C , 1994. The small vertebrate fauna of the lower Lufeng Formation, Yunnan. In: Fraser N C, Sues H D eds. In the Shadow of the Dinosaurs-Early Mesozoic Tetrapods. Cambridge: Cambridge University Press. 251-270 |
66 | Luo Z X, Wu X C , 1995. Correlation of vertebrate assemblage of the lower Lufeng Formation, Yunnan, China. In: Sun A L, Wang Y Q eds. Sixth Symposium on Mesozoic Terrestrial Ecosystem and Biotas, Short Papers. Beijing: China Ocean Press. 83-88 |
67 | Luo Z X, Kielan-Jaworowska Z, Cifelli R L , 2002. In quest for a phylogeny of Mesozoic mammals. Acta Palaeontol Pol, 47(1):1-78 |
68 |
Luo Z X, Kielan-Jaworowska Z, Cifelli R L , 2004. Evolution of dental replacement in mammals. Bull Carnegie Mus Nat Hist, 36:159-175
DOI URL |
69 |
Luo Z X, Chen P J, Li G et al., 2007a. A new eutriconodont mammal and evolutionary development in early mammals. Nature, 446:288-293
DOI URL |
70 |
Luo Z X, Ji Q, Yuan C X , 2007b. Convergent dental adaptations in pseudotribosphenic and tribosphenic mammals. Nature, 450:93-97
DOI URL |
71 |
Luo Z X, Yuan C X, Meng Q J et al., 2011. A Jurassic eutherian mammal and divergence of marsupials and placentals. Nature, 476:442-445
DOI URL |
72 |
Luo Z X, Meng Q J, Ji Q et al., 2015a. Evolutionary development in basal mammaliaforms as revealed by a docodontan. Science, 347:760-763
DOI URL |
73 |
Luo Z X, Gatesy S M, Jenkins F A et al., 2015b. Mandibular and dental characteristics of Late Triassic mammaliaform Haramiyavia and their ramifications for basal mammal evolution. Proc Natl Acad Sci USA, 112:E7101-E7109
DOI URL |
74 |
Luo Z X, Meng Q J, Grossnickle D M et al., 2017. New evidence for mammaliaform ear evolution and feeding adaptation in a Jurassic ecosystem. Nature, 548:326-329
DOI URL |
75 |
Maisch M W, Matzke A T, Grossmann F et al., 2005. The first haramiyoid mammal from Asia. Naturwissenschaften, 92(1):40-44
DOI URL |
76 | Mao F Y, Li C K, Wang Y Q et al., 2016. The incisor enamel microstructure of Mina hui (Mammalia, Glires) and its implication for the taxonomy of basal Glires. Vert PalAsiat, 54(2):137-155 |
77 |
Mao F Y, Wang Y Q, Bi S D et al., 2017. Tooth enamel microstructures of three Jurassic euharamiyidans and implications for tooth enamel evolution in allotherian mammals. J Vert Paleont, 37(2), doi: 10.1080/02724634.2017.1279168
DOI |
78 |
Martin T, Averianov A O, Pfretzschner H U , 2010a. Mammals from the Late Jurassic Qiqu Formation in the southern Junggar Basin, Xinjiang, Northwest China. Palaeobio Palaeoenv, 90(3):295-319
DOI URL |
79 | Martin T, Nowotney M, Fischer M , 2010b. New data on tooth replacement in the Late Jurassic docodont mammal Haldanodon exspectatus. J Vert Paleont, 30(Supp):130A |
80 |
Martin T, Marugán-Lobón J, Vullo R et al., 2015. A Cretaceous eutriconodont and integument evolution in early mammals. Nature, 526:380-384
DOI URL |
81 |
Meng J , 2014. Mesozoic mammals of China: implications for phylogeny and early evolution of mammals. Natl Sci Rev, 1(4):521-542
DOI URL |
82 | Meng J, Hu Y M, Wang Y Q et al., 2003. Dentocranial morphologies of the Early Cretaceous triconodont mammal Repenomamus: new evidence for mammalian evolution. J Vert Paleont, 23(Supp):78A |
83 |
Meng J, Wang Y Q, Li C K , 2011. Transitional mammalian middle ear from a new Cretaceous Jehol eutriconodontan. Nature, 472:181-185
DOI PMID |
84 |
Meng J, Bi S D, Wang Y Q et al., 2014. Dental and mandibular morphologies of Arboroharamiya (Haramiyida, Mammalia): a comparison with other haramiyidans and Megaconus and implications for mammalian evolution. PloS One, 9:e113847
DOI URL |
85 |
Meng J, Bi S D, Zheng X T et al., 2018. Ear ossicle morphology of the Jurassic euharamiyidan Arboroharamiya and evolution of mammalian middle ear. J Morphol, 279:441-457
DOI URL |
86 |
Meng Q J, Ji Q, Zhang Y G et al., 2015. An arboreal docodont from the Jurassic and mammaliaform ecological diversification. Science, 347:764-768
DOI URL |
87 |
Meng Q J, Grossnickle D M, Liu D et al., 2017. New gliding mammaliaforms from the Jurassic. Nature, 548:291-296
DOI URL |
88 | Miao D S , 1986. Dental anatomy and ontogeny of Lambdopsalis bulla (Mammalia, Multituberculata). Contrib Geol Univ Wyo, 24:65-76 |
89 | Mills J R E , 1971. The dentition of Morganucodon. In: Kermack D M, Kermack K A eds. Early Mammals. Zool J Linn Soc, 50(S1):29-63 |
90 | Nowotny M, Martin T, Fischer M S , 2001. Dental anatomy and tooth replacement of Haldanodon exspectatus (Docodonta, Mammalia) from the Upper Jura of Portugal. J Morphol, 248(S3):268 |
91 |
O’Meara R N, Asher R J , 2016. The evolution of growth patterns in mammalian versus nonmammalian cynodonts. Paleobiology, 42(3):439-464
DOI URL |
92 |
Osborn J W , 1974a. On the tooth succession in Diademodon. Evolution, 28:141-157
DOI PMID |
93 |
Osborn J W , 1974b. On the control of tooth replacement in reptiles and its relationship to growth. J Theor Biol, 46:509-527
PMID |
94 | Osborn J W, Crompton A W , 1973. The evolution of mammalian from reptilian dentitions. Brev Mus Comp Zool, 399:1-18 |
95 | Owen R , 1871. Monograph of the Fossil Mammalia of the Mesozoic Formations. London: Palaeontographical Society. 1-140 |
96 | Panciroli E, Benson R B J, Walsh S , 2017. The dentary of Wareolestes rex (Megazostrodontidae): a new specimen from Scotland and implications for morganucodontan tooth replacement. Palaeontology, 3(3):373-386 |
97 | Parrington F R , 1936. On the tooth replacement in theriodont reptiles. Philos Trans R Soc London, Ser B, 226:121-142 |
98 |
Parrington F R , 1947. On the collection of Rhaetic mammalian teeth. Proc Zool Soc London, 116:707-728
DOI URL |
99 | Parrington F R , 1971. On the Upper Triassic mammals. Philos Trans R Soc London, Ser B, 261:231-272 |
100 |
Parrington F R , 1973. The dentitions of the earliest mammals. Zool J Linn Soc, 52(1):85-95
DOI URL |
101 | Parrington F R , 1978. A further account of the Triassic mammals. Philos Trans R Soc London, Ser B, 282:177-204 |
102 | Peyer B , 1956. Über Zähne von Haramiyiden, von Triconodontiden und von wahrscheinlich synapsiden Reptilien aus dem Rhät von Hallau. Schweiz Paläontol Abh, 72:1-72 |
103 |
Pond C M , 1977. The significance of lactation in the evolution of mammals. Evolution, 31(1):177-199
DOI URL |
104 |
Rodrigues H G, Marangoni P, Šumbera R et al., 2011. Continuous dental replacement in a hyper-chisel tooth digging rodent. Proc Natl Acad Sci USA, 108:17355-17359
DOI URL |
105 |
Ross C F, Eckhardt A, Herrel A et al., 2007. Modulation of intra-oral processing in mammals and lepidosaurs. Integr Comp Biol, 47(1):118-136
DOI URL |
106 |
Rougier G W, Sheth A S, Carpenter K et al., 2014. A new species of Docodon (Mammaliaformes: Docodonta) from the Upper Jurassic Morrison Formation and a reassessment of selected craniodental characters in basal mammaliaforms. J Mamm Evol, 22(1):1-16
DOI URL |
107 | Rowe T , 1993. Phylogenetic systematics and the early history of mammals. In: Szalay F S, Novacek M J, McKenna M C eds. Mammal Phylogeny: Mesozoic Differentiation, Multituberculates, Monotremes, Early Therians, and Marsupials. New York: Springer-Verlag. 129-145 |
108 |
Rowe T, Rich T H, Vickers-Rich P et al., 2008. The oldest platypus and its bearing on divergence timing of the platypus and echidna clades. Proc Natl Acad Sci USA, 105:1238-1242
DOI URL |
109 | Sigogneau-Russell D , 1989. Haramiyidae (Mammalia, Allotheria) en provenance du Trias supérieur de Lorraine (France). Palaeontogr Abt A, 206:137-198 |
110 | Sigogneau-Russell D , 1991. First evidence of Multituberculata (Mammalia) in the Mesozoic of Africa. Neues Jahrb Geol Paläontol Abh, 1991: 119-125 |
111 | Sigogneau-Russell D, Frank P, Hemmerlé J , 1986. A new family of mammals from the lower part of the French Rhaetic. In: Padian K ed. The Beginning of the Age of Dinosaurs Faunal Change Across the Triassic-Jurassic Boundary. Cambridge: Cambridge University Press. 99-108 |
112 | Simpson G G , 1928. A Catalogue of the Mesozoic Mammalia in the Geological Department of the British Museum. London: Trustees of the British Museum. 1-215 |
113 |
Sweetman S C , 2008. A spalacolestine spalacotheriid (Mammalia, Trechnotheria) from the Early Cretaceous (Barremian) of southern England and its bearing on spalacotheriid evolution. Palaeontology, 51:1367-1385
DOI URL |
114 | Tyndale-Biscoe H, Renfree M , 1987. Reproductive Physiology of Marsupials. Cambridge: Cambridge University Press. 1-413 |
115 |
Wang Y Q, Hu Y M, Meng J et al., 2001. An ossified Meckel’s cartilage in two Cretaceous mammals and origin of the mammalian middle ear. Science, 294:357-361
DOI URL |
116 | Winge H , 1941. The Interrelationships of the Mammalian Genera, Vol. 1: Monotremata, Marsupialia, Insectivora, Chiroptera, Edentata. Kobenhavn: C. A. Reitzels-Forlag. 1-418 |
117 | Zeller U , 1999. Mammalian reproduction: origin and evolutionary transformations. Zool Anz, 238(1):117-130 |
118 | Zhang F K, Crompton A W, Luo Z X et al., 1998. Pattern of dental replacement of Sinoconodon and its implications for evolution of mammals. Vert PalAsiat, 36(3):197-217 |
119 |
Zheng X T, Bi S D, Wang X L et al., 2013. A new arboreal haramiyid shows the diversity of crown mammals in the Jurassic period. Nature, 500:199-202
DOI URL |
120 |
Zhou C F, Wu S Y, Martin T et al., 2013. A Jurassic mammaliaform and the earliest mammalian evolutionary adaptations. Nature, 500:163-167
DOI URL |
121 |
Ziegler A C , 1971. A theory of the evolution of therian dental formulas and replacement pattern. Q Rev Biol, 46(3):226-249
DOI URL |
[1] | 张法奎, A. W. Crompton, 罗哲西, C. R. Schaff. 中国尖齿兽牙齿替换方式及其对哺乳动物进化的意义. 古脊椎动物学报, 1998, 36(03): 197-217. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||