古脊椎动物学报 ›› 2020, Vol. 58 ›› Issue (4): 305-327.DOI: 10.19615/j.cnki.1000-3118.200413
收稿日期:
2019-08-20
出版日期:
2020-10-20
发布日期:
2020-10-19
通讯作者:
* liqian@ivpp.ac.cn基金资助:
XU Ran-Cheng1,2,3, LI Qian1,2,*()
Received:
2019-08-20
Published:
2020-10-20
Online:
2020-10-19
摘要:
记述了4件采自内蒙古乌兰塔塔尔早渐新世地层的近乎完整的、上下颌咬合在一起的梳趾鼠类头骨化石,基于牙齿特征将新材料归于乌兰塔塔尔丘齿鼠(Bounomys ulantatalensis
中图分类号:
徐冉成, 李茜. 内蒙古乌兰塔塔尔地区早渐新世梳趾鼠类头骨新材料. 古脊椎动物学报, 2020, 58(4): 305-327.
XU Ran-Cheng, LI Qian. New skulls of ctenodactyloids from the Early Oligocene of Ulantatal, Nei Mongol, China. Vertebrata Palasiatica, 2020, 58(4): 305-327.
Fig. 1 Google map showing the four sections in the Ulantatal gulley bbreviations: KK. Kekeamu section 克克阿木剖面;SJ. Shangjing section 上井剖面;SZT. Shaozengtu section 稍增图剖面;UTM. Ulantatal Main Section 乌兰塔塔尔主剖面(After Zhang et al., 2016)
Fig. 2 Skull of Bounomys ulantatalensis (IVPP V 26128) from the Ulantatal Formation of Ulantatal area, Alxa Left Banner, Nei Mongol in dorsal (A, B) and ventral (C, D) views Abbreviations: as. alisphenoid 翼蝶骨; bo. basioccipital 基枕骨; bs. basisphenoid 基蝶骨; eac. external acoustic canal 外耳道; ec. ectotympanic 外鼓骨; eo. exoccipital 外枕骨; eoc. external occipital crest 枕外嵴; ere. epitympanic recess eminence 鼓上隐窝隆起; fm. foramen magnum 枕骨大孔; fr. frontal 额骨; fsa. foramen for stapedial artery 镫骨动脉孔; hf. hypoglossal foramen 舌下神经孔; I2. upper second incisor 上第二门齿; ica. foramen for internal carotid artery 颈内动脉孔; inf. incisive foramen 门齿孔; iof. infraorbital foramen 眶下孔; ip. interparietal 间顶骨; ips. foramen for inferior petrosal sinus 岩下窦沟孔; jf. jugular foramen 颈静脉孔; ju. jugal 颧骨; lac. lacrimal 泪骨; me. mastoid exposure 岩骨乳突暴露部; mipf. minor palatine foramen 小腭孔; mpf. major palatine foramen 大腭孔; msf. masticatory foramen 咬肌神经孔; mx. maxilla 上颌骨; na. nasal 鼻骨; nc. nuchal crest 项嵴; oc. occipital condyle 枕髁; pa. parietal 顶骨; pal. palatine 腭骨; pcp. paracondylar process 髁旁突; pmx. premaxilla 前颌骨; pop. postorbital process 眶后突; ps. presphenoid 前蝶骨; pt. pterygoid 翼骨; ptf. pterygoid fossa 翼窝; spv. sphenopalatine vacuity 蝶腭空缺; sq. squamosal 鳞骨, su. supraoccipital 上枕骨; tc. temporal crest 颞嵴
Fig. 3 Skull of Bounomys ulantatalensis (IVPP V 26128) from the Ulantatal Formation of Ulantatal area, Alxa Left Banner, Nei Mongol in rostral (A, B) and occipital (C, D) views Abbreviations: ena. external nasal aperture 外鼻孔; zpmx. zygomatic process of maxilla 上颌颧突;other abbreviations see Fig. 2
Fig. 4 Skulls of Bounomys ulantatalensis from the Ulantatal Formation of Ulantatal area, Alxa Left Banner, Nei Mongol A, B. IVPP V 26128 in right lateral view; C, D. V 26125 in left lateral view Abbreviations: bf. buccinator foramen 颊肌神经孔; eam. external acoustic meatus 外耳门; ef. ethmoidal foramina 筛孔; fo. foramen ovale 卵圆孔; lf. lacrimal foramen 泪孔; opc. optic canal 视神经孔; os. orbitosphenoid 眶蝶骨; sof. sphenorbital fissure 蝶眶裂; spf. sphenofrontal foramen 蝶额孔; spl. sphenopalatine foramen 蝶腭孔; other abbreviations see Figs. 2, 3
Fig. 5 Skulls of Bounomys ulantatalensis from the Ulantatal Formation of Ulantatal area, Alxa Left Banner, Nei Mongol A-E. IVPP V 26125 in dorsal (A), left (reversed) (B), ventral (C), rostral (D), and occipital (E) views; F-I. V 26126 in dorsal (F), right (G), ventral (H), and rostral (I) views; J-M. V 26127 in dorsal (J), right (K), ventral (L) and rostral (M) views
Fig. 6 3D-reconstruction and some CT images of partial structures of the left middle ear of Bounomys ulantatalensis (IVPP V 26127) from the Ulantatal Formation of Ulantatal area, Alxa Left Banner, Nei Mongol The yellow model in the center of the picture is the ventral view of the middle ear cavity (some structures that obstruct the observation have been removed) and is surrounded by CT images of different parts of the middle ear cavity. A-A’. the transverse plane through the opening of the auditory tube; B-B’. the transverse plane through the anteromedial shelf; C-C’. the transverse plane through the promontorium; D-D’. the sagittal plane through the promontorium Abbreviations: ad. anterior depression 前凹; ams. anteromedial shelf 前内侧架; aub. auditory bulla 听泡; aut. auditory tube 咽鼓管; coc. cochlear canal 蜗管; eac. external acoustic canal 外耳道; epr. epitympanic recess 鼓上隐窝; prm. promontorium 岬; tmr. tympanic ring 鼓环。Scale bars = 2 mm
Fig. 7 3D-reconstruction of the ossicles of Bounomys ulantatalensis from the Ulantatal Formation of Ulantatal area, Alxa Left Banner, Nei Mongol A. IVPP V 26128, lateral view of left malleus and incus in articular with the head of malleus forward; B. V 26127, posterolateral view of left malleus and anterolateral view of left incus Abbreviations: cb. crus breve 砧骨短脚; cl. crus longum 砧骨长脚; h. head of malleus 锤骨头; i. incus砧骨; lp. lateral process of malleus 锤骨侧突; ma. malleus 锤骨; mn. manubrium 锤骨柄; n. neck of malleus 锤骨颈
Fig. 8 Mandibles of Bounomys ulantatalensis from the Ulantatal Formation of Ulantatal area, Alxa Left Banner, Nei Mongol A. IVPP V 26128 in occlusal view; B. the right mandible of V 26128 in labial view; C. the right mandible of V 26126 in lingual view Abbreviations: an. angular process 角突; cop. condyloid process 髁突; cor. coronoid process 冠状突; i2. lower second incisor 下第二门齿; lptf. lateral pterygoid fossa 翼外肌窝; mac. masseteric crest 咬肌嵴; maf. masseteric fossa 咬肌窝; manf. mandibular foramen 下颌孔; mf. mental foramen 颏孔; mptf. medial pterygoid fossa 翼内肌窝; nf. nutricium foramina 滋养孔; p4. lower fourth premolar下第四前臼齿
Fig. 9 Mandibles of Bounomys ulantatalensis from the Ulantatal Formation of Ulantatal area, Alxa Left Banner, Nei Mongol A, C, E. mandibles of IVPP V 26125 (A), V 26126 (C), V 26127 (E) in occlusal view; B, D, F. the right mandibles of V 26125 (B), V 26126 (D), V 26127 (F) in labial view
B. ulantatalensis | B. ulantatalensis ( | B. bohlini ( | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
V 26125 | V 26126 | V 26127 | V 26128 | Average | ||||||
P4-M3 | L | 8.54 | 8.54 | 8.12 | 8.18 | 8.35 | / | 6.15-7.30 | ||
P4 | L | 1.4 | 1.29 | 1.17 | 1.38 | 1.31 | 1.84 | 0.98-1.48 | ||
W | 1.88 | 2.07 | 1.71 | 1.90 | 1.89 | 2.16 | 1.23-1.97 | |||
M1 | L | 2.09 | 2.21 | 2.12 | 2.08 | 2.13 | 2.24-2.56 | 1.31-1.99 | ||
W | 1.96 | 2.23 | 2.01 | 2.08 | 2.07 | 2.16-2.53 | 1.48-2.05 | |||
M2 | L | 2.28 | 2.42 | 2.39 | 2.38 | 2.37 | 2.56-2.80 | 1.64-2.13 | ||
W | 2.29 | 2.58 | 2.47 | 2.42 | 2.44 | 2.08-2.72 | 1.56-2.09 | |||
M3 | L | 2.52 | 2.52 | 2.46 | 2.41 | 2.48 | 2.24-2.88 | 1.72-2.16 | ||
W | 2.38 | 2.53 | 2.37 | 2.43 | 2.43 | 2.45-2.72 | 1.60-2.05 | |||
p4-m3 | L | 9.07 | 9.24 | 8.61 | 8.55 | 8.87 | 9.12-10.08 | 7.46-7.71 | ||
p4 | L | 1.45 | 1.49 | 1.25 | 1.26 | 1.36 | 1.60-1.76 | 1.48-1.56 | ||
W | 1.32 | 1.41 | 1.21 | 1.25 | 1.30 | 1.28-1.65 | 1.31-1.31 | |||
m1 | L | 2.08 | 2.2 | 2.27 | 2.21 | 2.19 | 2.32-2.88 | 1.89-2.01 | ||
W | 1.53 | 1.79 | 1.82 | 1.77 | 1.73 | 1.76-2.40 | 1.44-1.56 | |||
m2 | L | 2.52 | 2.58 | 2.45 | 2.55 | 2.53 | 2.56-3.36 | 2.09-2.46 | ||
W | 1.95 | 2.22 | 2.12 | 2.13 | 2.11 | 2.08-2.61 | 1.64-1.97 | |||
m3 | L | 2.9 | 2.9 | 2.77 | 2.78 | 2.84 | 2.72-3.52 | 2.13-2.38 | ||
W | 1.87 | 2.14 | 2.08 | 2.15 | 2.06 | 2.05-2.61 | 1.56-1.80 |
Table 1 Comparison of measurements among Bounomys (mm)
B. ulantatalensis | B. ulantatalensis ( | B. bohlini ( | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
V 26125 | V 26126 | V 26127 | V 26128 | Average | ||||||
P4-M3 | L | 8.54 | 8.54 | 8.12 | 8.18 | 8.35 | / | 6.15-7.30 | ||
P4 | L | 1.4 | 1.29 | 1.17 | 1.38 | 1.31 | 1.84 | 0.98-1.48 | ||
W | 1.88 | 2.07 | 1.71 | 1.90 | 1.89 | 2.16 | 1.23-1.97 | |||
M1 | L | 2.09 | 2.21 | 2.12 | 2.08 | 2.13 | 2.24-2.56 | 1.31-1.99 | ||
W | 1.96 | 2.23 | 2.01 | 2.08 | 2.07 | 2.16-2.53 | 1.48-2.05 | |||
M2 | L | 2.28 | 2.42 | 2.39 | 2.38 | 2.37 | 2.56-2.80 | 1.64-2.13 | ||
W | 2.29 | 2.58 | 2.47 | 2.42 | 2.44 | 2.08-2.72 | 1.56-2.09 | |||
M3 | L | 2.52 | 2.52 | 2.46 | 2.41 | 2.48 | 2.24-2.88 | 1.72-2.16 | ||
W | 2.38 | 2.53 | 2.37 | 2.43 | 2.43 | 2.45-2.72 | 1.60-2.05 | |||
p4-m3 | L | 9.07 | 9.24 | 8.61 | 8.55 | 8.87 | 9.12-10.08 | 7.46-7.71 | ||
p4 | L | 1.45 | 1.49 | 1.25 | 1.26 | 1.36 | 1.60-1.76 | 1.48-1.56 | ||
W | 1.32 | 1.41 | 1.21 | 1.25 | 1.30 | 1.28-1.65 | 1.31-1.31 | |||
m1 | L | 2.08 | 2.2 | 2.27 | 2.21 | 2.19 | 2.32-2.88 | 1.89-2.01 | ||
W | 1.53 | 1.79 | 1.82 | 1.77 | 1.73 | 1.76-2.40 | 1.44-1.56 | |||
m2 | L | 2.52 | 2.58 | 2.45 | 2.55 | 2.53 | 2.56-3.36 | 2.09-2.46 | ||
W | 1.95 | 2.22 | 2.12 | 2.13 | 2.11 | 2.08-2.61 | 1.64-1.97 | |||
m3 | L | 2.9 | 2.9 | 2.77 | 2.78 | 2.84 | 2.72-3.52 | 2.13-2.38 | ||
W | 1.87 | 2.14 | 2.08 | 2.15 | 2.06 | 2.05-2.61 | 1.56-1.80 |
Fig. 10 Occlusal view of cheek teeth of Bounomys ulantatalensis from the Ulantatal Formation of Ulantatal area, Alxa Left Banner, Nei Mongol A-D. IVPP V 26125: A. right M1-M3; B. left P4-M3; C. left p4-m3; D. right m1-m3; E-H. V 26126: E. right P4-M3; F. left P4-M3; G. left p4-m3; H. right p4-m3; I-L. V 26127: I. right P4-M3; J. left P4-M3; K. left p4-m3; L. right p4-m3; M-P. V 26128: M. right P4-M3; N. left P4-M3; O. left p4-m3; P. right p4-m3
[1] | Bohlin B, 1946. The fossil mammals from the Tertiary deposit of Taben-Buluk, western Kansu. II Simplicidentata, Carnivora, Artiodactyla, Perissodactyla and Primates. Palaeont Sin, New Ser C, 8B:1-256 |
[2] |
Cox P G, Rayfield E J, Fagan M J et al., 2012. Functional evolution of the feeding system in rodents. PLoS One, 7(4):e36299
DOI URL PMID |
[3] |
Harzhauser M, Daxner-Höck G, López-Guerrero P et al., 2016. Stepwise onset of the Icehouse world and its impact on Oligo-Miocene Central Asian mammals. Sci Rep, 6:36169
URL PMID |
[4] | Hautier L, 2010. Masticatory muscle architecture in the gundi Ctenodactylus vali (Mammalia, Rodentia). Mammalia, 74(2):153-162 |
[5] | Huang X S, 1982. Preliminary observations on the Oligocene deposits and mammalian fauna from Alashan Zuoqi, Nei Mengol. Vert PalAsiat, 20(4):337-349 |
[6] | Huang X S, 1985. Middle Oligocene ctenodactylids (Rodentia, Mammalia) of Ulantatal, Nei Mongol. Vert PalAsiat, 23(1):27-38 |
[7] | Huang X S, 1998. The age of Ulantatal fauna. Vert PalAsiat, 36(1):70-75 |
[8] | Kraatz B P, Geisler J H, 2010. Eocene-Oligocene transition in Central Asia and its effects on mammalian evolution. Geology, 38(2):111-114 |
[9] | Li C K, 1975. Yuomys, a new ischyromyoid rodent genus from the Upper Eocene of North China. Vert PalAsiat, 13(1):58-70 |
[10] | Li C K, Zheng J J, Ting S Y, 1989. The skull of Cocomys lingchaensis, an Early Eocene ctenodactyloid rodent of Asia. In: Black C C, Dawson M R eds. Papers on Fossil Rodents in Honour of Albert Elmer Wood. Spec Ser, Nat Hist Mus Los Angeles County, 33:179-192 |
[11] | Li L Z, 2013. The morphology of the bony labyrinth of Cocomys lingchaensis. MA. Sc thesis. Beijing: University of Chinese Academy of Sciences. 1-44 |
[12] | Li Q, Meng J, 2015. New ctenodactyloid rodents from the Erlian Basin, Nei Mongol, China, and the phylogenetic relationships of Eocene Asian ctenodactyloids. Am Mus Novit, 3828:1-20 |
[13] | Li Q, Tong Y S, 2019. Ctenodactyloidea: Incertae familiae. In: Qiu Z X, Li C K eds. Palaeovertebrata Sinica, VIII Basal Synapsids and Mammals, Fascicle 5(1), Glires II: Rodentia I. Beijing: Science Press. 341-388 |
[14] | Mares M A, Lacher T E, 1987. Ecological, morphological, and behavioral convergence in rock-dwelling mammals. In: Genoways H H ed. Current Mammalogy. Boston: Springer. 307-348 |
[15] |
Mason M J, 2013. Of mice, moles and guinea pigs: functional morphology of the middle ear in living mammals. Hear Res, 301:4-18
URL PMID |
[16] |
Mason M J, 2016a. Structure and function of the mammalian middle ear. I: Large middle ears in small desert mammals. J Anat, 228(2):284-299
DOI URL PMID |
[17] |
Mason M J, 2016b. Structure and function of the mammalian middle ear. II: Inferring function from structure. J Anat, 228(2):300-312
DOI URL PMID |
[18] | Meng J, McKenna M C, 1998. Faunal turnovers of Palaeogene mammals from the Mongolian Plateau. Nature, 394:364-367 |
[19] | Meng J, Hu Y M, Li C K, 2003. The osteology of Rhombomylus (Mammalia, Glires): implications for phylogeny and evolution of Glires. Bull Am Mus Nat Hist, 275:1-247 |
[20] | Oliver A, Daxner-Höck G, 2017. Large-sized species of Ctenodactylidae from the Valley of Lakes (Mongolia): an update on dental morphology, biostratigraphy and paleobiogeography. Palaeontol Electron, 20(1):1-22 |
[21] | Prothero D R, Heaton T H, 1996. Faunal stability during the Early Oligocene climatic crash. Palaeogeogr Palaeoclimatol Palaeoecol, 127:257-283 |
[22] | Qiu Z X, Qiu Z D, 1995. Chronological sequence and subdivisions of Chinese Neogene mammalian faunas. Palaeogeogr Palaeoclimat Palaeoecol, 116:41-70 |
[23] | Rodrigues H G, Marivaux L, Vianey-Liaud M, 2014. Rodent paleocommunities from the Oligocene of Ulantatal (Inner Mongolia, China). Paleovertebrata, 38(1):1-11 |
[24] | Rosowski J J, Ravicz M E, Songer J E, 2006. Structures that contribute to middle-ear admittance in chinchilla. J Comp Physiol A, 192(12):1287-1311 |
[25] | Russell D E, Zhai R J, 1987. The paleogene of Asia: mammals and stratigraphy. Mém Mus Natl Hist Nat Ser Sci Terre, 52:1-488 |
[26] | Schmidt-Kittler N, Vianey-Liaud M, Marivaux L, 2007. Oligocene-Miocene vertebrates from the Valley of Lakes (Central Mongolia): morphology, phylogenetic and stratigraphic implications 6. The Ctenodactylidae (Rodentia, Mammalia). Ann Naturhist Mus, 108:173-215 |
[27] | Schrenk F, 1989. Zur Schädelentwicklung von Ctenodactylus gundi (Rothmann 1776) (Mammalia: Rodentia). Cour Forsch Inst Senckenberg, 108:1-241 |
[28] |
Sun J M, Ni X J, Bi S D et al., 2015. Synchronous turnover of flora, fauna, and climate at the Eocene-Oligocene Boundary in Asia. Sci Rep, 4:7463
URL PMID |
[29] | Tong Y S, 1997. Middle Eocene small mammals from Liguanqiao Basin of Henan Province and Yuanqu Basin of Shanxi Province, Central China. Paleont Sin, New Ser C, 26:1-256 |
[30] | Vianey-Liaud M, Schmidt-Kittler N, Marivaux L, 2006. The Ctenodactylidae (Rodentia) from the Oligocene of Ulantatal (Inner Mongolia, China). Palaeovertebrata, 34:111-206 |
[31] |
Vianey-Liaud M, Gomes Rodrigues H, Marivaux L, 2010. A new Oligocene Ctenodactylinae (Rodentia: Mammalia) from Ulantatal (Nei Mongol): new insight on the phylogenetic origins of the modern Ctenodactylidae. Zool J Linn Soc, 160:531-550
DOI URL |
[32] | Wahlert J H, 1974. The cranial foramina of protrogomorphous rodents: an anatomical and phylogenetic study. Bull Mus Comp Zool, 146(8):363-410 |
[33] | Wang B Y, 1997. The mid-Tertiary Ctenodactylidae (Rodentia, Mammalia) of eastern and central Asia. Bull Am Mus Nat Hist, 234:1-88 |
[34] | Wang B Y, 2001. Late Eocene ctenodactyloids (Rodentia, Mammalia) from Qujing, Yunnan, China. Vert PalAsiat, 39(1):24-42 |
[35] | Wang B Y, 2019. Ctenodactylidae. In: Qiu Z X, Li C K eds. Palaeovertebrata Sinica, VIII, Basal Synapsids and Mammals, Fascicle 5(1), Glires II: Rodentia I. Beijing: Science Press. 388-436 |
[36] | Wang B Y, Qiu Z X, 2018. Late Miocene Pararhizomyines from Linxia Basin of Gansu, China. Paleont Sin, New Ser C, 31:1-271 |
[37] | Wang B Y, Wang P Y, 1991. Discovery of early medial Oligocene mammalian fauna from Kekeamu, Alxa Left Banner, Nei Mongol. Vert PalAsiat, 29(1):64-71 |
[38] | Wang Y F, Wei C F, Que J M et al., 2019. Development and applications of paleontological computed tomography. Vert PalAsiat, 57(1):84-92 |
[39] | Webster D B, 1962. A function of the enlarged middle-ear cavities of the kangaroo rat, Dipodomys. Physiol Zool, 35(3):248-255 |
[40] | Webster D B, Webster M, 1980. Morphological adaptations of the ear in the rodent family Heteromyidae. Am Zool, 20(1):247-254 |
[41] | Wible J R, Wang Y Q, Li C K et al., 2005. Cranial anatomy and relationships of a new ctenodactyloid (Mammalia, Rodentia) from the Early Eocene of Hubei Province, China. Ann Carnegie Mus, 74(2):91-151 |
[42] | Wood A E, 1977. The evolution of the rodent family Ctenodactylidae. J Palaeont Soc India, 20:120-137 |
[43] |
Zachos J, Pagani M, Sloan L et al., 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292:686-693
DOI URL PMID |
[44] |
Zhang Z Q, Liu Y, Wang L H et al., 2016. Lithostratigraphic context of Oligocene mammalian faunas from Ulantatal, Nei Mongol, China. C R Palevol, 15(7):903-910
DOI URL |
[1] | 王伴月, 邱占祥. 甘肃临夏盆地牙沟地区椒子沟组底部的小哺乳动物化石. 古脊椎动物学报, 2023, 61(4): 284-316. |
[2] | 王伴月, 邱占祥, 王世骐. 甘肃临夏盆地椒子沟组上部满散村小哺乳动物群. 古脊椎动物学报, 2023, 61(2): 123-141. |
[3] | 李茜. 内蒙古二连盆地额尔登敖包剖面新增查干鼠类、圆柱齿鼠类及梳趾鼠类化石材料. 古脊椎动物学报, 2021, 59(1): 1-18. |
[4] | 李永项,张云翔,李 冀,李智超,谢 坤. 兰州盆地新发现的早渐新世巨犀化石. 古脊椎动物学报, 2017, 55(4): 367-381. |
[5] | 陈耿娇,岑立地,刘娟. 广西南宁渐新世基于咽齿的鲤亚科一新属. 古脊椎动物学报, 2017, 55(3): 201-209. |
[6] | 吴文裕,孟 津,叶 捷,倪喜军,毕顺东. 新疆准噶尔盆地北缘晚渐新世睡鼠再研究. 古脊椎动物学报, 2016, 54(1): 36-50. |
[7] | 陈耿娇,廖卫,雷学强. 广西南宁盆地发现渐新世早-中期鳅科眼下刺化石. 古脊椎动物学报, 2015, 53(4): 299-309. |
[8] | 王健,张兆群. 内蒙古三盛公渐新世古鼬(食肉目,古鼬科)新材料及系统发育关系分析. 古脊椎动物学报, 2015, 53(4): 310-334. |
[9] | Gudrun Daxner-Höck,Demchig Badamgarav, Margarita Erbajeva. 蒙古中部湖泊之谷沉积岩?玄武岩共存的渐新世地层:蒙古?奥地利合作项目回顾. 古脊椎动物学报, 2010, 48(4): 348-366. |
[10] | 王伴月. 内蒙古下渐新统梳趾鼠类一新属. 古脊椎动物学报, 2010, 48(1): 79-83. |
[11] | 王伴月,孟津. 中国内蒙古的阿尔丁鼠(Ardynomys)化石. 古脊椎动物学报, 2009, 47(3): 240-244. |
[12] | 陈耿娇 , 刘 娟. 柴达木盆地渐新世的鲤科鱼类化石. 古脊椎动物学报, 2007, 45(4): 330-341. |
[13] | 孟 津 叶 捷 吴文裕 岳乐平 倪喜军. 准噶尔盆地北缘谢家阶底界—推荐界线层型及其生物—年代地层和环境演变意义. 古脊椎动物学报, 2006, 44(03): 205-236. |
[14] | 劳伦斯J.弗林. 亚洲土著类群硅藻鼠科的演化. 古脊椎动物学报, 2006, 44(02): 182-192. |
[15] | 王伴月, D. 达什泽维格. 蒙古新发现的渐新世山河狸和松鼠类化石. 古脊椎动物学报, 2005, 43(02): 85-99. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||