古脊椎动物学报 ›› 2021, Vol. 59 ›› Issue (2): 106-124.DOI: 10.19615/j.cnki.1000-3118.201222
吴倩1,2,3, 邹晶梅4, 李志恒1,2, 艾莉达1,2,*()
收稿日期:
2020-11-20
出版日期:
2021-05-20
发布日期:
2021-04-20
通讯作者:
*alida.bailleul@ivpp.ac.cn基金资助:
WU Qian1,2,3, Jingmai K. O’CONNOR4, LI Zhi-Heng1,2, Alida M. BAILLEUL1,2,*()
Received:
2020-11-20
Published:
2021-05-20
Online:
2021-04-20
摘要:
飞行的早期演化是古生物研究的热点问题之一。现生鸟类演化出多种不同飞行方式,然而对中生代鸟类飞行方式的研究亟需寻找具有指示意义的指标。骨骼与关节组织尤其是乌喙骨-叉骨关节是实现鸟类飞行功能的重要组成,因此其关节的组织形态可能有助于反映现生鸟类的飞行方式。鸟类膜质骨中的次级软骨受到表观遗传的重要影响,只能在关节受到肌肉运动刺激的情况下形成,因此能够反映鸟类关节的形成力学环境;对三种不同飞行方式的现生鸟类(珠颈斑鸠、树麻雀和普通楼燕), 以及热河生物群中最为常见的古鸟类之一孔子鸟(Confuciusornis)的叉骨乌喙骨关节的组织学特征进行了分析,显示在所有三种现生鸟类中,叉骨与乌喙骨之间均存在可动关节,并且在叉骨上存在次级软骨。而孔子鸟的叉骨上也存在次级软骨,这是次级软骨组织在中生代鸟类叉骨化石中的首次报道。进一步分析发现,不同现生鸟类物种的次级软骨组织形态存在差异,还需更多数据建立相关形态功能关系以便用于帮助推断中生代鸟类的飞行方式。
中图分类号:
吴倩, 邹晶梅, 李志恒, 艾莉达. 现生鸟类和孔子鸟(Confuciusornis)叉骨软骨的研究:初步分析以及对中生代鸟类飞行方式的启示. 古脊椎动物学报, 2021, 59(2): 106-124.
WU Qian, Jingmai K. O’CONNOR, LI Zhi-Heng, Alida M. BAILLEUL. Cartilage on the furculae of living birds and the extinct bird Confuciusornis: a preliminary analysis and implications for flight style inferences in Mesozoic birds. Vertebrata Palasiatica, 2021, 59(2): 106-124.
Fig. 1 Histology of the furcula-coracoid joint in the Spotted dove, the Eurasian tree sparrow and the Common swift with paraffin slides stained with a modified Masson’s trichrome A, D, G. images of the joint in the Spotted dove; B, E, H. images of the joint in the Eurasian tree sparrow; C, F, I. images of the joint in the Common swift. A-C. show the synovial joints at low resolution; D-F. close-ups on the primary cartilage on the coracoid; G-I. close-ups on the secondary cartilage on the furcula Abbreviations: CO. coracoid; CSC. calcified secondary cartilage; FT. fibrous tissue; FU. furcula; PC. primary cartilage; SC. secondary cartilage; syc. synovial cavity; sym. synovial membrane
Fig. 2 Morphology, CT-scans and histology of the furcula of Confuciusornis (IVPP V 11521) A. photograph of the furcula; B. CT-scan of the left epicleideal process of the furcula; C. demineralized piece of cartilage from the left epicleideal process after 48 hours in EDTA; D. longitudinal ground-section in the right epicleideal process of the furcula; E-G. close-ups of that epicleideal process showing calcified secondary cartilage; H-I. close-ups on the rami seen in D, shown under natural transmitted light (H) and cross-polarized light (I) Abbreviations: CB. cortical bone; CSC. calcified secondary cartilage; epi. epicleideum; FU. furcula; HU. humerus; ICL. inner circumferential layer; MC. medullary cavity; OCL. outer circumferential layer; SC. secondary cartilage; sed. sediment
Fig. 3 Morphology and histology of the scapulocoracoid of Confuciusornis (IVPP V 11521) A. photograph of the fused scapulocoracoid showing the coracoid on one side (CO), the scapula (SCA) on the other side, and the glenoid fossa (gf) for the articulation of the humerus in between; B. a ground-section (cross section) through the glenoid fossa and on the opposite side, remnants of calcified fibrocartilage (CFC) can be seen with some sediment (sed) in a concave area; C-E. close-ups on the fibrocartilage, a few chondrocyte lacunae can be seen as well (blue arrows)
[1] |
Bailleul A M, Hall B K, Horner J R, 2012. First evidence of dinosaurian secondary cartilage in the post-hatching skull of Hypacrosaurus stebingeri (Dinosauria, Ornithischia). PLoS ONE, 7(4):e36112
DOI URL |
[2] |
Bailleul A M, Hall B K, Horner J R, 2013. Secondary cartilage revealed in a non-avian dinosaur embryo. PLoS ONE, 8(2):e56937
DOI URL |
[3] |
Bailleul A M, Witmer L M, Holliday C M, 2017. Cranial joint histology in the mallard duck (Anas platyrhynchos): new insights on avian cranial kinesis. J Anat, 230(3):444-460
DOI URL |
[4] |
Bailleul A M, Li Z H, O’Connor J K et al., 2019a. Origin of the avian predentary and evidence of a unique form of cranial kinesis in Cretaceous ornithuromorphs. Proc Natl Acad Sci USA, 116:24696-24706
DOI URL |
[5] | Bailleul A M, O’Connor J K, Schweitzer M H, 2019b. Dinosaur paleohistology: review, trends and new avenues of investigation. PeerJ, 2019(9):1-45 |
[6] | Baumel J, Raikow R, 1993. Arthrologia. In: Baumel J J, King A S, Breazile J E et al. eds. Handbook of Avian Anatomy: Nomina Anatomica Avium, 2nd ed. Cambridge, Massachusetts: Publications of the Nuttall Ornithological Club. 133-187 |
[7] | Bishop C M, Butler P J, 2015. Flight. In: Scanes C G, Sturkie P D eds. Sturkie’s Avian Physiology. London: Elsevier/Academic Press. 919-967 |
[8] |
Bruderer B, Peter D, Boldt A et al., 2010. Wing-beat characteristics of birds recorded with tracking radar and cine camera. Ibis, 152(2):272-291
DOI URL |
[9] |
Brusatte S L, Lloyd G T, Wang S C et al., 2014. Gradual assembly of avian body plan culminated in rapid rates of evolution across the dinosaur-bird transition. Curr Biol, 24(20):2386-2392
DOI URL |
[10] |
Butler P J, 2016. The physiological basis of bird flight. Philos Trans R Soc B, 371:20150384
DOI URL |
[11] |
Canoville A, Schweitzer M H, Zanno L E, 2019. Systemic distribution of medullary bone in the avian skeleton: ground truthing criteria for the identification of reproductive tissues in extinct Avemetatarsalia. BMC Evol Biol, 19(1):71
DOI PMID |
[12] | Carter D R, Orr T E, Fyhrie D P et al., 1987. Influences of mechanical stress on prenatal and postnatal skeletal development. Clin Orthop Relat Res, 219:237-250 |
[13] | Chiappe L M, Ji S A, Ji Q et al., 1999. Anatomy and systematics of the Confuciusornithidae (Theropoda, Aves) from the Late Mesozoic of northeastern China. Bull Am Mus Nat Hist, 242:1-89 |
[14] |
Chiappe L M, Di L, Serrano F J et al., 2019a. Anatomy and flight performance of the early enantiornithine bird Protopteryx fengningensis: information from new specimens of the Early Cretaceous Huajiying Formation of China. Anat Rec, 303(4):716-731
DOI URL |
[15] |
Chiappe L M, Meng Q J, Serrano F et al., 2019b. New Bohaiornis-like bird from the Early Cretaceous of China: enantiornithine interrelationships and flight performance. PeerJ, 7:e7846
DOI URL |
[16] |
Chinsamy A, Marugán-Lobón J, Serrano F J et al., 2020. Osteohistology and life history of the basal pygostylian, Confuciusornis sanctus. Anat Rec, 303(4):949-962
DOI URL |
[17] |
Close R A, Rayfield E J, 2012. Functional morphometric analysis of the furcula in Mesozoic birds. PLoS ONE, 7(5):e36664
DOI URL |
[18] |
Dececchi T A, Larsson H C, 2011. Assessing arboreal adaptations of bird antecedents: testing the ecological setting of the origin of the avian flight stroke. PLoS ONE, 6(8):e22292
DOI URL |
[19] |
Dial K P, Jackson B E, Segre P, 2008. A fundamental avian wing-stroke provides a new perspective on the evolution of flight. Nature, 451:985
DOI URL |
[20] |
Falk A R, Kaye T G, Zhou Z H et al., 2016. Laser fluorescence illuminates the soft tissue and life habits of the Early Cretaceous bird Confuciusornis. PLoS ONE, 11(4):e0167284
DOI URL |
[21] | Feo T J, Field D J, Prum R O, 2015. Barb geometry of asymmetrical feathers reveals a transitional morphology in the evolution of avian flight. Proc R Soc B-Biol Sci, 282:20142864 |
[22] | Fürbringer M, 1888. Untersuchungen zur Morphologie und Systemat der Vögel II. Allgemeiner Theil. Amsterdam: Verlag von T J. Van Holkema. 1-884 |
[23] |
Hall B K, 1967. The distribution and fate of the adventitious cartilage in the skull of the eastern rosella, Platycerus eximius (Aves : Psittaciformes). Aust J Zool, 15(4):685
DOI URL |
[24] |
Hall B K, 1972. Immobilization and cartilage transformation into bone in the embryonic chick. Anat Rec, 173(4):391-404
PMID |
[25] |
Hall B K, 1986. The role of movement and tissue interactions in the development and growth of bone and secondary cartilage in the clavicle of the embryonic chick. Development, 93(1):133-152
DOI URL |
[26] | Hall B K, 2000. The evolution of the neural crest in vertebrates. In: Olsson L, Jacobson C O eds. Regulatory Processes in Development, Wenner-Gren International Series Vol. 76. London: Portland Press. 101-113 |
[27] |
Hall B K, 2001. Development of the clavicles in birds and mammals. J Exp Zool, 289(3):153-161
PMID |
[28] | Hall B K, Vickaryous M K, 2015. Merrythoughts of the past and present: revisiting the homology of the furcula. In: Belinda-Emonds O R P, Powell G L, Jamniczky H A eds. All Animals are Interesting. A Festschrift in Honour of Anthony P. Russell. Oldenburg Germany: BIS-Verlag -Carl von Ossietzky University. 439-454 |
[29] |
Hou L H, Martin L D, Zhou Z H et al., 1999. A diapsid skull in a new species of the primitive bird Confuciusornis. Nature, 399:679-682
DOI URL |
[30] |
Hui C A, 2002. Avian furcula morphology may indicate relationships of flight requirements among birds. J Morphol, 251(3):284-293
DOI URL |
[31] |
Jenkins F A, 1993. The evolution of the avian shoulder joint. Am J Sci, 293(A):253-267
DOI URL |
[32] |
Jenkins F A, Dial K P, Goslow G E, 1988. A cineradiographic analysis of bird flight: the wishbone in starlings is a spring. Science, 241:1495-1498
DOI URL |
[33] |
Jiang B, Zhao T, Regnault S et al., 2017. Cellular preservation of musculoskeletal specializations in the Cretaceous bird Confuciusornis. Nat Commun, 8(1):1-10
DOI URL |
[34] | Kardong K V, 2019. Vertebrates: Comparative Anatomy, Function, Evolution. 8th ed. New York, NY: McGraw-Hill Education. 1-817 |
[35] |
Liu D, Chiappe L M, Serrano F et al., 2017. Flight aerodynamics in enantiornithines: information from a new Chinese Early Cretaceous bird. PLoS ONE, 12(10):e0184637
DOI URL |
[36] |
McGonnell I M, 2001. The evolution of the pectoral girdle. J Anat, 199:189-194
PMID |
[37] |
Mitchell J, Legendre L J, Lefèvre C et al, 2017. Bone histological correlates of soaring and high-frequency flapping flight in the furculae of birds. Zoology, 122:90-99
DOI URL |
[38] |
Müller G B, 2003. Embryonic motility: environmental influences and evolutionary innovation. Evol Dev, 5(1):56-60
PMID |
[39] |
Murray P D, Drachman D B, 1969. The role of movement in the development of joints and related structures: the head and neck in the chick embryo. Development, 22(3):349-371
DOI URL |
[40] |
Murray P D F, Smiles M, 1965. Factors in the evocation of adventitious (secondary) cartilage in the chick embryo. Aust J Zool, 13(3):351-382
DOI URL |
[41] |
Nudds R L, Dyke G J, 2010. Narrow primary feather rachises in Confuciusornis and Archaeopteryx suggest poor flight ability. Science, 328:887-889
DOI URL |
[42] |
O’Connor P M, 2004. Pulmonary pneumaticity in the postcranial skeleton of extant Aves: a case study examining Anseriformes. J Morphol, 261(2):141-161
DOI URL |
[43] | Persson M, 1983. The role of movements in the development of sutural and diarthrodial joints tested by long-term paralysis of chick embryos. J Anat, 137(3):591-599 |
[44] |
Pollard A S, Boyd S, McGonnell I M et al., 2017. The role of embryo movement in the development of the furcula. J Anat, 230(3):435-443
DOI URL |
[45] |
Ponomartsev S, Valasek P, Patel K et al., 2017. Neural crest contribution to the avian shoulder girdle and implications to girdle evolution in vertebrates. Biol Comm, 62(1):26-37
DOI URL |
[46] |
Ponton F, Montes L, Castanet J et al., 2007. Bone histological correlates of high-frequency flapping flight and body mass in the furculae of birds: a phylogenetic approach. Biol J Linn Soc, 91(4):729-738
DOI URL |
[47] |
Russell A P, Joffe D J, 1985. The early development of the quail (Coturnix c. japonica) furcula reconsidered. J Zool, 206(1):69-81
DOI URL |
[48] |
Schepelmann K, 1990. Erythropoietic bone marrow in the pigeon: development of its distribution and volume during growth and pneumatization of bones. J Morphol, 203(1):21-34
PMID |
[49] | Senter P, 2006. Scapular orientation in the theropods and basal birds, and the origin of flapping flight. Acta Palaeontol Pol, 51(2):305-313 |
[50] |
Serrano F J, Chiappe L M, 2017. Aerodynamic modelling of a Cretaceous bird reveals thermal soaring capabilities during early avian evolution. J R Soc Interface, 14:20170182
DOI URL |
[51] |
Serrano F J, Palmqvist P, Chiappe L M et al., 2017. Inferring flight parameters of Mesozoic avians through multivariate analyses of forelimb elements in their living relatives. Paleobiology, 43(1):144-169
DOI URL |
[52] |
Serrano F J, Chiappe L M, Palmqvist P et al., 2018. Flight reconstruction of two European enantiornithines (Aves, Pygostylia) and the achievement of bounding flight in Early Cretaceous birds. Palaeontology, 61(3):359-368
DOI URL |
[53] |
Shatkovska O V, Ghazali M, 2017. Relationship between developmental modes, flight styles, and wing morphology in birds. Eur Zool J, 84(1):390-401
DOI URL |
[54] |
Usherwood J R, 2016. Physiological, aerodynamic and geometric constraints of flapping account for bird gaits, and bounding and flap-gliding flight strategies. J Theor Biol, 408:42-52
DOI URL |
[55] |
Vazquez R J, 1992. Functional osteology of the avian wrist and the evolution of flapping flight. J Morphol, 211(3):259-268
DOI URL |
[56] | Vickaryous M K, Hall B K, 2010. Comparative development of the crocodylian interclavicle and avian furcula, with comments on the homology of dermal elements in the pectoral apparatus. J Exp Zool, 314B(3):196-207 |
[57] | Wang X, Tang H K, Clarke J A, 2019a. Flight, symmetry and barb angle evolution in the feathers of birds and other dinosaurs. Biol Lett, 15(12):9-14 |
[58] | Wang M, O’Connor J K, Zhou Z H, 2019b. A taxonomical revision of the Confuciusornithiformes (Aves: Pygostylia). Vert PalAsiat, 57:1-37 |
[59] |
Witten P E, Hall B K, 2003. Seasonal changes in the lower jaw skeleton in male Atlantic salmon (Salmo salar L.): remodelling and regression of the kype after spawning. J Anat, 203(5):435-450
DOI URL |
[1] | 王敏. 马氏副渤海鸟(鸟翼类:反鸟类)新标本对鸟类头骨早期演化的意义. 古脊椎动物学报, 2023, 61(2): 90-107. |
[2] | 李志恒, 王维, 胡晗, 王敏, 易鸿宇, 卢静. 眼齿鸟再分析显示其蜥蜴属性. 古脊椎动物学报, 2021, 59(2): 95-105. |
[3] | 邹晶梅, 福雅曼, 王敏, 郑晓廷. 未成熟羽毛在早白垩世热河鸟类生物群幼年反鸟类中的首次报道. 古脊椎动物学报, 2020, 58(1): 24-44. |
[4] | 秦子川, 赵祺, 徐星. 张氏西峡爪龙(兽脚类:阿尔瓦雷斯龙类)第二跖骨的骨组织学及其对“窄足型”足部结构发育的启示. 古脊椎动物学报, 2019, 57(3): 205-213. |
[5] | 周亚纯, 舒柯文, 张福成. 中生代鸟类牙齿的退化及其可忽略的体重效应. 古脊椎动物学报, 2019, 57(1): 38-50. |
[6] | 王敏, 邹晶梅, 周忠和. 孔子鸟目(鸟类:尾综骨类)的分类厘定. 古脊椎动物学报, 2019, 57(1): 1-37. |
[7] | 王 维, 邹晶梅. 早白垩世鸟类尾综骨与尾羽之间的形态协同演化. 古脊椎动物学报, 2017, 55(4): 289-314. |
[8] | 邹晶梅,郑晓廷,胡 晗,王孝理,周忠和. 巨前颌契氏鸟 (鹏鸟科:反鸟类)的形态学描述及早白垩世鸟类尾羽的空气动力学功能比较. 古脊椎动物学报, 2017, 55(1): 41-58. |
[9] | Thomas A. STIDHAM. 云南禄丰晚中新世鸭类标本的再研究与系统发育分析. 古脊椎动物学报, 2015, 53(4): 335-349. |
[10] | 王 敏,周忠和,邹晶梅,Nikita V. ZELENKOV. 中国早白垩世反鸟类一新科 (Bohaiornithidae fam. nov.). 古脊椎动物学报, 2014, 52(1): 31-76. |
[11] | 胡 晗,周忠和,邹晶梅 . 鹏鸟(Pengornis)一新材料及其对反鸟特征演化的指示意义. 古脊椎动物学报, 2014, 52(1): 77-97. |
[12] | 邹晶梅,王 敏,郑晓廷,王孝理,周忠和. 早白垩世两只鸟类雌性个体的骨组织学研究. 古脊椎动物学报, 2014, 52(1): 112-128. |
[13] | Amanda R. FALK,林钟真,Stephen T. HASIOTIS . 韩国哈曼组鸟类足迹化石行为分析及与现代鸟类生态系统的对比. 古脊椎动物学报, 2014, 52(1): 129-152. |
[14] | 徐 星,舒柯文,王 烁 . 兽脚类恐龙长掌义县龙的系统发育位置. 古脊椎动物学报, 2013, 51(3): 169-183. |
[15] | 徐 星,赵 祺,舒柯文,谭庆伟,Martin SANDER, 马檠宇. 伤齿龙标本IVPP V 10597分类学重新讨论. 古脊椎动物学报, 2012, 50(2): 140-150. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||