古脊椎动物学报 ›› 2022, Vol. 60 ›› Issue (1): 1-28.DOI: 10.19615/j.cnki.2096-9899.211026
• • 下一篇
毕黛冉1,2, 吴飞翔1,3,*(), 王宁4, 张弥曼1,2,3, 房庚雨1,2
收稿日期:
2021-05-11
出版日期:
2022-01-20
发布日期:
2022-02-14
通讯作者:
*, wufeixiang@ivpp.ac.cn基金资助:
BI Dai-Ran1,2, WU Fei-Xiang1,3,*(), WANG Ning4, CHANG Mee-Mann1,2,3, FANG Geng-Yu1,2
Received:
2021-05-11
Published:
2022-01-20
Online:
2022-02-14
摘要:
柴达木盆地是研究青藏高原古环境和动物演化历史的一个关键区域。为了适应上新世时期柴达木盆地环境的干旱化,化石裂腹鱼类伍氏献文鱼(Hsianwenia wui)演化出了异常粗大的骨骼。然而,人们对于这种骨骼增粗现象(pachyostosis)的性质仍知之甚少。为了进一步认识这一特征及其生理学机制,对伍氏献文鱼进行了详尽的形态解剖学工作,并识别出了一些新的信息:脑腔前部分叉的嗅束通道、韦伯氏器上发达的第3髓上骨、第5尾前椎支持众多尾鳍短鳍条以及第2尾前椎上一个附加的髓弓(棘)。此外,发现献文鱼骨骼的增粗存在差异性:该现象仅见于内骨骼,外骨骼(膜质骨)一般未见增粗;在成组增粗的内骨骼(如肌间骨:上髓弓小骨和上肋小骨)中,腹侧骨骼较背侧增粗更为明显。伍氏献文鱼匙骨后缘有一个显著而独特的位于胸鳍上方的“肩突”(humeral process), 对比现生鲤科鱼类咀嚼活动中相关肌肉和骨骼的联动关系,认为这个“肩突”的出现与伍氏献文鱼咽颌骨骼(第五角鳃骨)增粗以及研磨坚硬的食物有关。
中图分类号:
毕黛冉, 吴飞翔, 王宁, 张弥曼, 房庚雨. 柴达木盆地上新世伍氏献文鱼(Cyprinidae: Schizothoracinae)形态学再研究. 古脊椎动物学报, 2022, 60(1): 1-28.
BI Dai-Ran, WU Fei-Xiang, WANG Ning, CHANG Mee-Mann, FANG Geng-Yu. Revisit of Hsianwenia wui (Cyprinidae: Schizothoracinae) from the Pliocene of Qaidam Basin. Vertebrata Palasiatica, 2022, 60(1): 1-28.
Fig. 1 Hsianwenia wui Chang et al., 2008 from the Pliocene of Qaidam Basin A. photograph of holotype (IVPP V 15244); B. skeletal restoration. Anterior facing right Arrows in the caudal fin in B indicate the outermost upper and lower principal rays. Scale bar equals 20 mm
Total length | 460-510 |
---|---|
Standard length | 417.7 |
Body depth | 77.4 |
Head length | 109.2 |
Head depth | 63.0 |
Snout length | 17.8 |
Postorbital length | 63.9 |
Distance between snout tip and dorsal fin origin | 231.3 |
Distance between dorsal fin and caudal fin base | 186.4 |
Distance between anal fin origin and pelvic fin insertion | 99.8 |
Distance between anal fin origin and caudal fin base | 75.1 |
Distance between pectoral fin insertion and pelvic fin insertion | 103.5 |
Dorsal fin base length | 46.4 |
Anal fin base length | 29.1 |
Caudal peduncle length | 47.0 |
Caudal peduncle depth | 24.3 |
Pectoral fin length | 84.5 |
Pelvic fin length | 61.8 |
Standard length/body depth | 5.4 |
Head length/head depth | 1.7 |
Standard length/head length | 3.8 |
Caudal peduncle length/caudal peduncle depth | 1.9 |
Table 1 Measurements and meristics (ratio) of Hsianwenia wui (IVPP V 15244) (mm)
Total length | 460-510 |
---|---|
Standard length | 417.7 |
Body depth | 77.4 |
Head length | 109.2 |
Head depth | 63.0 |
Snout length | 17.8 |
Postorbital length | 63.9 |
Distance between snout tip and dorsal fin origin | 231.3 |
Distance between dorsal fin and caudal fin base | 186.4 |
Distance between anal fin origin and pelvic fin insertion | 99.8 |
Distance between anal fin origin and caudal fin base | 75.1 |
Distance between pectoral fin insertion and pelvic fin insertion | 103.5 |
Dorsal fin base length | 46.4 |
Anal fin base length | 29.1 |
Caudal peduncle length | 47.0 |
Caudal peduncle depth | 24.3 |
Pectoral fin length | 84.5 |
Pelvic fin length | 61.8 |
Standard length/body depth | 5.4 |
Head length/head depth | 1.7 |
Standard length/head length | 3.8 |
Caudal peduncle length/caudal peduncle depth | 1.9 |
Fig. 2 Hsianwenia wui Chang et al., 2008 from the Pliocene of Qaidam Basin, skull, pectoral girdle and anterior part of pectoral fins (holotype IVPP V 15244) A. photograph; B. line drawing Abbreviations: aCh. anterior ceratohyal; An. anguloarticular; Apa. autopalatine; br. branchiostegal rays; Cl. cleithrum; De. dentary; Ecpt. ectopterygoid; Enpt. entopterygoid; Epo. epioccipital; fna. foramen of hyoid artery and facial nerve; Fr. frontal; Hh. hypohyal; Hy. hyomandibular; Io2-3. infraorbital 2-3; Iop. interopercle; Le. lateral ethmoid; lp2. lateral process of the second vertebral centrum; Me. mesethmoid; Mx. maxilla; Mpt. metapterygoid; ocpip. origin of m. pharyngo-cleithralis internus posterior; oos. outer arm of the os suspensorium; Op. opercle; Pa. parietal; pf. pectoral fin; Pmx. premaxilla; Pop. preopercle; Pt. posttemporal; Pto. pterotic; Qu. quadrate; rb. rib; Scl. supracleithrum; Soc. supraoccipital; Sop. subopercle; Spo. sphenotic; T. tripus. Scale bar equals 10 mm. Anterior facing right
Fig. 3 Hsianwenia wui Chang et al., 2008 from the Pliocene of Qaidam Basin, skull of specimen IVPP V 15012 A. photograph; B. line drawing Abbreviations: Cb. ceratobranchial; gr. gill rakers; l. left; pb. pharyngeal bone; r. right For other abbreviations see Fig. 2. Scale bar equals 10 mm. Anterior facing right
Fig. 4 Hsianwenia wui Chang et al., 2008 from the Pliocene of Qaidam Basin, kinethmoid (IVPP V15306-1) (A-C) and orbitosphenoid (V 15306-2) (D-G) A. front view; B. back view; C. lateral view of kinethmoid. D. dorsal view; E. ventral view; F. front view; G. back view of orbitosphenoid. Dorsal facing up (A-C, F-G), figures marked with 1 are photographs, and 2 are line drawings Abbreviations: d. depression for ligament connecting dorsal processes of premaxillae; fLe. facet originally abutting lateral ethmoid; fPts. facet originally abutting pterosphenoid; fva. vascular foramina; gI. Grooves probably for passages of the olfactory tracts; p. process to connective tissue linking mesethmoid and vomer; rtel. recess for the telencephalon. The scale bars equal 1 mm in A-C, and equal 2 mm in D-G
Fig. 5 Hsianwenia wui Chang et al., 2008 from the Pliocene of Qaidam Basin, disarticulated dentary and anguloarticular A, B. photo (A1, B1) and drawing (A2, B2) of a right dentary (IVPP V 15306.1) in median (A) and lateral (B) views; C, D. photo (C1, D1) and drawing (C2, D2) of a left anguloarticular (V 15306.2) in lateral (C) and median (D) views Abbreviations: cp. coronoid process; fVmd. foramen for mandibular branch of trigeminal nerve; fVIImd. foramen for mandibular branch of facial nerve; gac. groove accommodating anguloarticular and Meckel’s cartilage; j. joint facet for counterpart dentary (mandibular symphysis); jRa. joint facet for retroarticular; Mco. the origin of the Meckel’s cartilage; msc. mandibular sensory canal; sQu. socket for the articular head of quadrate. Dorsal facing up. All scale bars equal 2 mm
Fig. 6 Hsianwenia wui Chang et al., 2008 from the Pliocene of Qaidam Basin, disarticulated opercular series bones A. left preopercle, medial view, in IVPP V 15245.1; B. the third branchiostegal ray in V 15245.2; C. the second or first branchiostegal in V 15245.2. Figures marked with 1 are photographs, and 2 are line drawings. Anterior facing right in A, and left in B-C, dorsal facing up Scale bars equal 20 mm in A, and equal 5 mm in B and C
Fig. 7 Hsianwenia wui Chang et al., 2008 from the Pliocene of Qaidam Basin, left hyomandibular (IVPP V 15306.3), pharyngeal bone and teeth in medial view (V 15244) and urohyal (V 28581) A, B. hyomandibular in medial (A) and lateral (B) views. Dorsal facing up. C. pharyngeal bone in medial view; D, E. urohyal in dorsal (D) and posterior (E) views, anterior facing left in D Abbreviations: ae. anterior edentulous process; fna. foramen of hyoid artery and facial nerve; hp. horizontal ventral plate; jn. dorsal joint processes to neurocranium; jOp. joint process to opercle; vp. longitudinal vertical plate Scale bars equal 10 mm Figures marked with 1 are photographs, and 2 are line drawings
Fig. 8 Hsianwenia wui Chang et al., 2008 from the Pliocene of Qaidam Basin, vertebrae A. abdominal vertebrae (IVPP V 15245.1); B. abdominal vertebrae (V 15244); C. caudal vertebrae (V 15245.1); D. caudal vertebrae (V 15012); E, F. left os suspensorium (V 15306) in front (E) and back (F) views Anterior facing left in A, C and F; anterior facing right in B, D, E. Dorsal facing up in all figures Figures marked with 1 are photographs and those marked with 2 are line drawings Abbreviations: do. distal end of outer arm of os suspensorium; En. epineural; Epl. epipleural; hs. haemal spine; ios. inner arm of os suspensorium (broken); lp2. lateral process of the second vertebral centrum; ns. neural spine; oos. the outer arm of the os suspensorium; pv. parapophysis; rb. rib; Sn3. supraneural 3; uh. upper head of os suspensorium; vc4, vc38. the 4th and 38th centra. Scale bars equal 10 mm
Fig. 9 Hsianwenia wui Chang et al., 2008 from the Pliocene of Qaidam Basin, intermuscular bones A. an epineural, IVPP V 15306.20; B. an epipleural, V 15012. Scale bars equal 5 mm Figures marked with 1 are photographs, and 2 are line drawings
Fig. 10 Hsianwenia wui Chang et al., 2008 from the Pliocene of Qaidam Basin, caudal skeleton and caudal fin (holotype IVPP V 15244) A. photograph; B. line drawing Abbreviations: cc. compound centrum; Ep. epural; Epl. epipleural; hs. haemal spine; H1-H5. hypural 1-5; ns. neural spine; Ph. parhypural; Pls. pleurostyle; Pu2, 5. preural centra 2, 5; Ur. Uroneural Arrow pointing to the outermost principal rays in upper and lower lobes, scale bar equals 5 mm
Fig. 11 Hsianwenia wui Chang et al., 2008 from the Pliocene of Qaidam Basin, median fins, paired fins and girdles A. dorsal fin (holotype, IVPP V 15244); B. anal fin (V 15244); C. anal fin (V 15012); D. pectoral fin (V 15244); E. pelvic fin V 15244); F. left basipterygium (V 15245.1). Anterior facing right, dorsal facing up Abbreviations: afs. anal fin stay; ap1. first anal fin pterygiophore; Bp. basipterygium; dp1. first dorsal fin pterygiorphore; fpr. facet for articulation of pelvic radials; ip. ischiac process; jp. joint process; Sn. supraneural. Scale bars equal 5 mm in F and 10 mm in the rest
Fig. 12 Musculoskeletal correlation of pharyngeal jaws and pectoral girdle (cleithrum) A. general cyprinid-type chewing system, Cyprinus carpio (redrawn from Sibbing, 1982); B. tentative restoration of chewing system of Hsianwenia wui based on A. Anterior facing left Abbreviations: ac. anterior cartilage; Cbr4. ceratobranchial 4; Cl. cleithrum; m.cpe. m. pharyngo-cleithralis externus; m.cpia. m. pharyngo-cleithralis internus anterior; m.cpip. m. pharyngo-cleithralis internus posterior; m.hpa. hypaxial trunk muscle; pb. pharyngeal bone; pcp. posterior cleithral process; pf. pectoral fin; Scl. supracleithrum. Drawings not to scale
[1] | Arratia G, Schultze H P, 1989. The composition of the caudal skeleton of teleosts (Actinopterygii: Osteichthyes). Zool J Linn Soc, 97:189-231 |
[2] | Cao W X, Chen Y Y, Wu Y F et al., 1981. Origin and evolution of Schizothoracine fishesin relation to the upheaval of the Qinghai-Xizang Plateau. In: Li Q F ed. Studies on the Period, Amplitude and Type of Uplift of the Qinghai-Xizang Plateau: the Comprehensive Scientific Expedition to the Qinghai-Xizang Plateau, Chinese Academy of Sciences. Beijing: Science Press. 118-130 |
[3] | Chang M M, Miao D S, 2016. Review of the Cenozoic fossil fishes from the Tibetan Plateau and their bearings on paleoenvironment. Chinese Sci Bull, 61:981-995 |
[4] | Chang M M, Wang X M, Liu H Z et al., 2008. Extraordinarily thick-boned fish linked to the aridification of the Qaidam Basin (northern Tibetan Plateau). Proc Nat Acad Sci USA, 105(36):13246-13251 |
[5] | Chang M M, Miao D S, Wang N, 2010. Ascent with modification: fossil fishes witnessed their own group’s adaptation to the uplift of the Tibetan Plateau during the late Cenozoic. Paper presented at the Darwin’s Heritage Today: Proceedings of the Darwin 200 Beijing International Conference. Beijing: Higher Education Press. 60-75 |
[6] | Chen G J, Liu J, 2007. First fossil barbin (Cyprinidae, Teleostei) from Oligocene of Qaidam Basin in northern Tibetan Plateau. Vert PalAsiat, 45:330-341 |
[7] | Chen X L, Yue P Q, Lin R D, 1984. Major groups within the family Cyprinidae and their phylogenetic relationships. Acta Zootaxon Sin, 9:424-440 |
[8] | Chen Y Y, Chen Y F, Liu H Z, 1996. Studies on the position of the Qinghai-Xizang Plateau region in zoogeographic divisions and its Eastern demarcation line. Acta Hydrobiol Sin, 20:97-103 |
[9] | Chu Y T, 1935. Comparative studies on the scales and on the pharyngeals and their teeth in Chinese cyprinids, with particular reference to taxonomy and evolution. Biol Bull St. John’s Univ, 2:1-290 |
[10] | Conway K W, 2011. Osteology of the South Asian Genus Psilorhynchus McClelland, 1839 (Teleostei: Ostariophysi: Psilorhynchidae), with investigation of its phylogenetic relationships within the order Cypriniformes. Zool J Linn Soc, 163:50-144 |
[11] | Conway K W, Chen W J, Mayden L R, 2008. The “Celestial Pearl danio” is a miniature Danio (s.s) (Ostariophysi: Cyprinidae): evidence from morphology and molecules. Zootaxa, 1686:1-28 |
[12] | Deng T, Wu F X, Su T et al., 2020. Tibetan Plateau: an evolutionary junction for the history of modern biodiversity. Sci China Earth Sci, 63(2):172-187 |
[13] | Diogo R, 2005. Morphological, Evolution, Aptations, Homoplasies, Constraints and Evolutionary Trends: Catfishes as a Case Study on General Plylogeny and Macroevolution. Enfield: Science Publishers. 1-491 |
[14] | Fang X M, Wu F L, Han W X et al., 2008. Plio-Pleistocene drying process of Asian inland: sporopollen and salinity records from Yahu Section in the Central Qaidam Basin. Quat Sci, 28(5):874-882 |
[15] | Fang X M, Dupont-Nivet G, Wang C S et al., 2020. Revised chronology of central Tibet uplift (Lunpola Basin). Sci Adv, 6: eaba7298 |
[16] | Gaudant J, 1979. “Pachylebias” crassicaudus (Agassiz) (Poisson téléostéen, Cyprinodontiforme), un constituent majeur de l’ichthyofaune du Messinien continental du Bassin Méditerranéen. Géobios, 12:47-73 |
[17] | Gaudant J, Guerrera F, Savelli D, 2015. Nouvelles données sur le Messinien de Méditerranée occidentale: Les gisements à Aphanius crassicaudus (Agassiz) (poisons téléostéens, cyprinodontiformes) des Marches (Italie). Geodinam Acta, 2(4):185-196 |
[18] | Gidmark N J, Tarrant J C, Brainerd E L, 2014. Convergence in morphology and masticatory function between the pharyngeal jaws of grass carp, Ctenopharyngodon idella, and oral jaws of amniote herbivores. J Exp Biol, 217:1925-1932 |
[19] | Kent-Corson M L, Ritts B D, Zhuang G S et al., 2009. Stable isotopic constraints on the tectonic, topographic, and climatic evolution of the northern margin of the Tibetan Plateau. Earth Planet Sci Lett, 282:158-166 |
[20] | Li L, Garzione C N, Pullen A et al., 2016. Early-middle Miocene topographic growth of the northern Tibetan Plateau: stable isotope and sedimentation evidence from the southwestern Qaidam Basin. Palaeogeogr Palaeoclimatol Palaeoecol, 461:201-213 |
[21] | Li L L, Wu C D, Fan C F et al., 2017. Carbon and oxygen isotopic constraints on paleoclimate and paleoelevation of the southwestern Qaidam basin, northern Tibetan Plateau. Geosci Front, 8(5):1175-1186 |
[22] | Meng Q W, Su J X, Li W D, 1987. Comparative Anatomy of Fishes. Beijing: Science Press. 1-403 |
[23] | Meunier F J, Gaudant J, 1987. Sur un cas de pachyostose chez un poisson du Miocéne terminal du basin méditerranéen, Aphanius crassicaudus (Agassiz), (Teleostei, Cyprinodontidae). C R Acad Sci Paris (Sér 2), 305:925-928 |
[24] | Miao Y F, Fang X M, Wu F L et al., 2013. Late Cenozoic continuous aridification in the western Qaidam Basin: evidence from sporopollen records. Clim Past, 9(4):1863-1877 |
[25] | Patterson C, 1975. The braincase of pholidophorid and leptolepid fishes, with a review of the actinopterygian braincase. Philos Trans R Soc Lond B Biol Sci, 269:275-579 |
[26] | Patterson C, 1977. Cartilage bones, dermal bones and membrane bones, or the exoskeleton versus the endoskeleton. In: Andrews S M ed. Problems in Vertebrate Evolution, Vol 4. London: Academic Press. 77-121 |
[27] | Patterson C, Johnson G D, 1995. The Intermuscular Bones and Ligaments of Teleostean Fishes. Washington: Smithsonian Institution Press. 1-83 |
[28] | Sibbing F A, 1982. Pharyngeal mastication and food transport in the carp (Cyprinus carpio L.): a cineradiographic and electromyographic study. J Morphol, 172(2):223-258 |
[29] | Song B W, Spicer R A, Zhang K X et al., 2020. Qaidam Basin leaf fossils show northeastern Tibet was high, wet and cool in the early Oligocene. Earth Planet Sci Lett, 537:1-10 |
[30] | Sorbini L, Tirapelle R, 1979. Messinian fossil fish of the Mediterranean. Palaeogeogr Palaeoclimatol Palaeoecol, 29:143-154 |
[31] | Su T, Farnsworth A, Spicer R A et al., 2019. No high Tibetan Plateau until the Neogene. Sci Adv, 5: eaav2189. |
[32] | Tao W J, Yang L, Mayden R L et al., 2019. Phylogenetic relationships of Cypriniformes and plasticity of pharyngeal teeth in the adaptive radiation of cyprinids. Sci China Life Sci, 62:553-565 |
[33] | Wang N, 2010. The Evolution of the Schizothoracinae During the Cenozoic and the Uplift of the Tibetan Plateau. Beijing: Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology. 1-106 |
[34] | Wang N, Chang M M, 2010. Pliocene cyprinids (Cypriniformes, Teleostei) from Kunlun Pass Basin, Northeastern Tibetan Plateau and their bearings on development of water system and uplift of the area. Sci China Earth Sci, 53:485-500 |
[35] | Wang N, Chang M M, 2012. Discovery of fossil Nemacheilids (Cypriniformes, Teleostei, Pisces) from the Tibetan Plateau, China. Sci China Earth Sci, 55:714-727 |
[36] | Wang N, Wu F X, 2015. New Oligocene cyprinid in the Central Tibetan Plateau documents the pre-uplift tropical lowlands. Ichthyol Res, 62(3):274-285 |
[37] | Wang X M, Qiu Z D, Li Q et al., 2007. Vertebrate paleontology, biostratigraphy, geochronology, and paleoenvironment of Qaidam Basin in northern Tibetan Plateau. Palaeogeogr Palaeoclimatol Palaeoecol, 254:363-385 |
[38] | Wang X M, Wang Y, Li Q et al., 2015. Cenozoic vertebrate evolution and paleoenvironment in Tibetan Plateau: progress and prospects. Gondwana Res, 27:1335-1354 |
[39] | Weitzman S H, 1962. The osteology of Brycon meeki, a generalized characid fish, with an osteological definition of the family. Stanford Ichthy Bull, 8:1-77 |
[40] | Wu F X, Miao D S, Chang M M et al., 2017. Fossil climbing perch and associated plant megafossils indicate a warm and wet Central Tibet during the late Oligocene. Sci Rep, 7:878 |
[41] | Wu F X, He D K, Fang G Y et al., 2019. Into Africa via Docked India: a fossil climbing perch from the Oligocene of Tibet helps solve the anabantid biogeographical puzzle. Sci Bull, 64(7):455-463 |
[42] | Wu Y F, Chen Y Y, 1980. Fossil cyprinid from the late Tertiary of North Xizang, China. Vert PalAsiat, 18:15-22 |
[43] | Wu Y F, Wu C Z, 1992. The Fishes of the Qinghai-Xizang Plateau. Chengdu: Sichuan Science & Technology Publishing House. 1-599 |
[44] | Yang L, Sado T, Hirt M V et al., 2015. Phylogeny and polyploidy: resolving the classification of cyprinine fishes (Teleostei: Cypriniformes). Mol Phylogenet Evol, 85:97-116 |
[45] | Yang T, Zhang L, Li W J et al., 2018. New schizothoracine from Oligocene of Qaidam Basin, northern Tibetan Plateau, China, and its significance. J Vert Paleont, 38:e1442840 |
[46] | Yin A, Dang Y Q, Zhang M et al., 2008. Cenozoic tectonic evolution of the Qaidam basin and its surrounding regions (Part 3): structural geology, sedimentation, and regional tectonic reconstruction. Geol Soc Am Bull, 120:847-876 |
[47] | Yu X J, Guo Z J, Fu S T, 2015. Endorheic or exorheic: differential isostatic effects of Cenozoic sediments on the elevations of the cratonic basins around the Tibetan Plateau. Terra Nova, 27:21-27 |
[48] | Zhuang G S, Brandon M T, Pagani M et al., 2014. Leaf wax stable isotopes from northern Tibetan Plateau: implications for uplift and climate since 15 Ma. Earth Planet Sci Lett, 390:186-198 |
[1] | 王伴月, 邱占祥. 豪猪化石在临夏盆地的新发现. 古脊椎动物学报, 2020, 58(3): 204-220. |
[2] | 郑绍华, 张颖奇, 崔宁. 记泥河湾盆地晚上新世—早更新世䶄亚科(Arvicolinae)和鼢鼠亚科(Myospalacinae)五新种. 古脊椎动物学报, 2019, 57(4): 308-324. |
[3] | 刘玉海, 朱敏, 林翔鸿, 卢立伍, 盖志琨. 新疆塔里木盆地志留纪盔甲鱼类新知. 古脊椎动物学报, 2019, 57(4): 253-273. |
[4] | Sayyed Ghyour ABBAS, Muhammad Akbar KHAN, Muhammad Adeeb BABAR, Muhammad HANIF,Muhammad AKHTAR. 巴基斯坦西瓦里克道克派珊组豕脊齿象属(长鼻目)新材料. 古脊椎动物学报, 2018, 56(4): 295-305. |
[5] | 戎钰芬. 河北围场下白垩统围场皇家螈(Regalerpeton weichangensis) (两栖类:有尾类)的再研究. 古脊椎动物学报, 2018, 56(2): 121-136. |
[6] | Raymond L. BERNOR,孙博阳. 中国的长鼻三趾马(Proboscidipparion)和近三趾马(Plesiohipparion)个体发育的形态学研究及其欧亚与非洲亲缘种的观察. 古脊椎动物学报, 2015, 53(1): 73-92. |
[7] | 刘丽萍, 郑绍华,崔 宁, 王李花. 记甘肃灵台晚上新世-早更新世地层中的无根鼢鼠. 古脊椎动物学报, 2014, 52(4): 440-466. |
[8] | 李 雨. 对德日进和罗学宾所研究的山西榆社大后猫(Metailurus major)化石的再研究. 古脊椎动物学报, 2014, 52(4): 467-485. |
[9] | 杨兴恺,张兆群 . 熊类头骨的三维几何形态学初步研究. 古脊椎动物学报, 2013, 51(4): 331-341. |
[10] | 刘丽萍,郑绍华,崔 宁,王李花 . 甘肃秦安晚中新世-早上新世的化石鼢鼠(Myospalacinae, Cricetidae, Rodentia)兼论鼢鼠亚科的分类. 古脊椎动物学报, 2013, 51(3): 211-241. |
[11] | 庞丽波. 内蒙古高特格上新世三趾马化石及其意义. 古脊椎动物学报, 2011, 49(2): 210-222. |
[12] | 刘丽萍,郑绍华,张兆群,王李花. 甘肃董湾晚新近纪地层及中新统/上新统界线. 古脊椎动物学报, 2011, 49(2): 229-240. |
[13] | 曾志杰,何文,陈善勤. 甘肃临夏盆地晚中新世鬣狗类群头骨的几何形态测量学及生态形态学分析. 古脊椎动物学报, 2010, 48(3): 235-246. |
[14] | 李强. 内蒙古上新世高特格地点的仓鼠化石. 古脊椎动物学报, 2010, 48(3): 247-261. |
[15] | 邱占祥,邓 涛,王伴月. 甘肃东乡首次发现熊化石——龙担哺乳动物群补充报道之二. 古脊椎动物学报, 2009, 47(4): 245-264. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||