古脊椎动物学报 ›› 2022, Vol. 60 ›› Issue (2): 81-116.DOI: 10.19615/j.cnki.2096-9899.211025
• • 下一篇
Henry GALIANO1, 曾志杰2,3,4(), Nikos SOLOUNIAS3,5, 王晓鸣3,4,6, 邱占祥6,7, Stuart C. WHITE8
收稿日期:
2021-05-25
出版日期:
2022-04-20
发布日期:
2021-10-26
通讯作者:
* zjt@berkeley.edu基金资助:
Henry GALIANO1, Z. Jack TSENG2,3,4(), Nikos SOLOUNIAS3,5, WANG Xiao-Ming3,4,6, QIU Zhan-Xiang6,7, Stuart C. WHITE8
Received:
2021-05-25
Published:
2022-04-20
Online:
2021-10-26
Contact:
* zjt@berkeley.edu摘要:
非洲土狼(Proteles cristatus)是鬣狗科中牙齿最为退化的一个种类,与其他化石及现生鬣狗物种粗壮的碎骨型牙齿形态截然不同。它的化石记录可以追溯到上新世,但尚缺少中间过渡形态的化石记录,以致生物学家对这一罕见的食蚁性食肉目动物的起源演化缺乏清楚的认知。描述了鬣狗科化石一新属甘肃鬣狗(Gansuyaena), 并讨论其对于土狼起源的重要指示。所记述的标本为从海外收回的甘肃临夏盆地新近纪材料,包括两件破损头骨和下颌。基于甘肃鬣狗的形态特征,进行了一系列的系统发育分析,结果显示Proteles, Mesoviverrops, Plioviverrops和Gansuyaena组成一个相对原始的鬣狗类群,即土狼亚科(Protelinae)。而且,新的形态证据支持土狼亚科在形态粗壮的鬣狗亚科出现之前就已形成一个独立的支系。
中图分类号:
Henry GALIANO, 曾志杰, Nikos SOLOUNIAS, 王晓鸣, 邱占祥, Stuart C. WHITE. 甘肃临夏盆地中新世鬣狗科一新属新种. 古脊椎动物学报, 2022, 60(2): 81-116.
Henry GALIANO, Z. Jack TSENG, Nikos SOLOUNIAS, WANG Xiao-Ming, QIU Zhan-Xiang, Stuart C. WHITE. A new aardwolf-line fossil hyena from Middle and Late Miocene deposits of Linxia Basin, Gansu, China. Vertebrata Palasiatica, 2022, 60(2): 81-116.
Fig. 1 Gansuyaena megalotis gen. et sp. nov., IVPP V 13507-1 Holotype cranium (A-D) and line drawing with key anatomical features labeled (E-H) in right lateral (A, E), left lateral (B, F), dorsal (C, G), and ventral (D, H) views. For abbreviations see text
Fig. 2 Gansuyaena megalotis gen. et sp. nov., IVPP V 13507, holotype dentition A, B. V 13507-1, upper dentition: A. occlusal surface, B. lateral view; C-F. V 13507-2, lower posterior dentition: C, E. right lower dentition, D, F. left lower dentition, C, D. lateral views, E, F. occlusal views
Fig. 3 Gansuyaena megalotis gen. et sp. nov., IVPP V 13507-1, holotype, partially segmented CT scan images A. medial view of right basicranial area with a cross sectional (along rostrocaudal axis) slice of right bulla in CT scan images, indicating location of slice in B; B. segmentation of bony elements are assigned cross-hatched color patterns (dorsal is up); C. dorsolateral view of right bulla as digitally reconstructed, with the external bulla made semi-transparent to show internal structures; D. ventral view of right bulla as in C Color codes in segmentation: light blue, basioccipital and basisphenoid; deep blue, petrosal and ventral promontorial process; yellow (solid in A or semi-transparent in C and D), external bulla (presumably mostly ectotympanic); red, dorsal laminar of bullar septum (ectotympanic); pink, ventral laminar of bullar septum (entotympanic). Colors seen through semi-transparent bulla has a paler tone
Fig. 4 Gansuyaena megalotis gen. et sp. nov., IVPP V 13507-2, holotype mandibular fragments A, B, E, F. right hemimandibular fragment; C, D, G, H. left hemimandibular fragment;A, D, E, H. lateral views; B, C, F, G. medial views; A-D. photos;E-H. line drawing with key dental morphology labeled. For abbreviations see text
Fig. 5 Gansuyaena megalotis gen. et sp. nov., reconstruction of the skull based on IVPP V 13507-1, V 13507-2, and V 13508 Illustration by Mick Ellison. Reprinted from Mick Ellison under a CC BY license, with permission from Mick Ellison, original copyright 2020
Skull and mandible | IVPP V 13507-1, V 13507-2 | IVPP V 13508 | P. orbignyi Gaudry |
---|---|---|---|
Length from ant end of premaxilla to end of occipital condyle | 90.6 (R) 102.0 (L) | - | ~105 |
Length from ant end of premaxilla to cleft of occipital condyle | 94.9 | - | (100.9) |
Length from ant end of premaxilla to end of glenoid process | 72.5 | - | (77.4) |
Postorbital width | 18.3 | - | |
Depth of braincase from basioccipital to top of parietal | 25.8 | - | |
Diameter of orbit | 17.7 | - | |
Transverse width inside nasal opening | 9 | 6.6 | |
Width across canines | 16.4 | 15.9 | |
Bulla length × width | 20.5×11.9 | - | |
Diameter of external auditory meatus | 7 | - | |
Width across mastoid processes | 29.5 | - | |
Transverse width occipital condyles | 15.5 | - | |
Width across P4s | 32.8 | - | |
Depth of skull at P4/M1 junction | 26.1 | - | (23.4) |
Width of incisor series across from outer edges of I3 | 11.1 | 10 | |
Length of mandibular symphysis to mandibular condyle | 66.5 | - | ~80 |
Width across canines | 9.9 | - | |
Depth below p1&2 | 8.5 | - | (10.7) |
Depth below p2&3 | 8.9 | - | (12.5) |
Depth below m1 | 11.2 | - | (12.5) |
Thickness below m1 | 4.6 | - |
Table 1 Skull measurements of Gansuyaena and Plioviverrops (mm)
Skull and mandible | IVPP V 13507-1, V 13507-2 | IVPP V 13508 | P. orbignyi Gaudry |
---|---|---|---|
Length from ant end of premaxilla to end of occipital condyle | 90.6 (R) 102.0 (L) | - | ~105 |
Length from ant end of premaxilla to cleft of occipital condyle | 94.9 | - | (100.9) |
Length from ant end of premaxilla to end of glenoid process | 72.5 | - | (77.4) |
Postorbital width | 18.3 | - | |
Depth of braincase from basioccipital to top of parietal | 25.8 | - | |
Diameter of orbit | 17.7 | - | |
Transverse width inside nasal opening | 9 | 6.6 | |
Width across canines | 16.4 | 15.9 | |
Bulla length × width | 20.5×11.9 | - | |
Diameter of external auditory meatus | 7 | - | |
Width across mastoid processes | 29.5 | - | |
Transverse width occipital condyles | 15.5 | - | |
Width across P4s | 32.8 | - | |
Depth of skull at P4/M1 junction | 26.1 | - | (23.4) |
Width of incisor series across from outer edges of I3 | 11.1 | 10 | |
Length of mandibular symphysis to mandibular condyle | 66.5 | - | ~80 |
Width across canines | 9.9 | - | |
Depth below p1&2 | 8.5 | - | (10.7) |
Depth below p2&3 | 8.9 | - | (12.5) |
Depth below m1 | 11.2 | - | (12.5) |
Thickness below m1 | 4.6 | - |
Upper dentition | IVPP V 13507-1 | V 13508 | BSP-1967-VI 743 | P. orbignyi Gaudry |
---|---|---|---|---|
I1 width | 1.5 | - | ||
I2 width | 1.5 | - | ||
I3 width | 1.9 | 1.8 | ||
Canine length × width | 3.9×2.9 | 4.0×2.5 | ||
tooth row I1-M2 | 52.4 (approx.) | 50.4 | ~54 | |
P1 length × width | 2.5×1.6 | 3.2×1.9 | (4.4) | |
P2 length × width | 6.2×2.1 | 5.3×2.4 | (6.8) | |
P3 length × width | 7.4×3.3 | 6.4×3.1 (approx.) | (6.3) | |
P4 length from parastyle to end of metacone | 11.1 | 10.5 | 13.6 | (10.4) |
P4 length from protocone to end of metacone | 12.7 | 12 | ||
P4 parastyle length from anterior edge to notch | 1.7 | 1.4 | ||
P4 length from parastyle notch to carnassial notch | 4.4 | 4 | ||
P4 length of metacone blade | 3.4 | 3.3 | ||
P4 protocone basin anteroposterior width | 2.5 | 2.9 | ||
P4 parastyle labial height | 3.1 | 3.2 | ||
P4 paracone labial height | 4 | 4.4 | ||
P4 metacone labial height | 3 | 3.1 | BSP-1967-VI 747 | |
M1 length × width | 4.6×7.4 | 4.5×9.0 | 5.9×11.6 | |
M2 length × width | 3.5×4.5 | 3.2×4.5 | 4.1×6.3 |
Table 2 Upper dentition measurements of Gansuyaena and Plioviverrops (mm)
Upper dentition | IVPP V 13507-1 | V 13508 | BSP-1967-VI 743 | P. orbignyi Gaudry |
---|---|---|---|---|
I1 width | 1.5 | - | ||
I2 width | 1.5 | - | ||
I3 width | 1.9 | 1.8 | ||
Canine length × width | 3.9×2.9 | 4.0×2.5 | ||
tooth row I1-M2 | 52.4 (approx.) | 50.4 | ~54 | |
P1 length × width | 2.5×1.6 | 3.2×1.9 | (4.4) | |
P2 length × width | 6.2×2.1 | 5.3×2.4 | (6.8) | |
P3 length × width | 7.4×3.3 | 6.4×3.1 (approx.) | (6.3) | |
P4 length from parastyle to end of metacone | 11.1 | 10.5 | 13.6 | (10.4) |
P4 length from protocone to end of metacone | 12.7 | 12 | ||
P4 parastyle length from anterior edge to notch | 1.7 | 1.4 | ||
P4 length from parastyle notch to carnassial notch | 4.4 | 4 | ||
P4 length of metacone blade | 3.4 | 3.3 | ||
P4 protocone basin anteroposterior width | 2.5 | 2.9 | ||
P4 parastyle labial height | 3.1 | 3.2 | ||
P4 paracone labial height | 4 | 4.4 | ||
P4 metacone labial height | 3 | 3.1 | BSP-1967-VI 747 | |
M1 length × width | 4.6×7.4 | 4.5×9.0 | 5.9×11.6 | |
M2 length × width | 3.5×4.5 | 3.2×4.5 | 4.1×6.3 |
Lower dentition | IVPP V 13507-2 | G. guerini Los Mansuetos | P. orbignyi Gaudry | |
---|---|---|---|---|
Length of tooth row from canine to end of m2 | 40.8 | ~53 | ||
Length from anterior end of p4 to posterior end of m1 | 17.2 | |||
i1 width | 1.1 | |||
i2 width | 1.1 | |||
i3 width | 1.5 | |||
Canine anteroposterior width | 3.5 | |||
p1 length × width | 1.5×? | |||
p2 length × width | 5.1×? | 5.5×2.5 | (6.5)×- | |
p3 length × width | ? | BSP-1967-VI 746 | 6.9×3.0 | (7.1)×- |
p4 length × width | 8.1×3.1 | 9.0×4.2 | 8.9×4.0 | (7.5)×- |
p4 height of principle cusp from posterior base of crown | 5 | BSP-1967-VI 745 | ||
m1 length × width | 8.7×3.9 | 11.3×5.1 | 11.4×5.5 | (8.4)×- |
m1 height of protoconid from anterior crown base | 4.4 | |||
m1 trigonid length × width | 5.6×3.9 | |||
m1 talonid length × width | 3.1×3.1 | 3.1×- | ||
m2 length × width | 3.9×2.5 |
Table 3 Lower dentition measurements of Gansuyaena and Plioviverrops (mm)
Lower dentition | IVPP V 13507-2 | G. guerini Los Mansuetos | P. orbignyi Gaudry | |
---|---|---|---|---|
Length of tooth row from canine to end of m2 | 40.8 | ~53 | ||
Length from anterior end of p4 to posterior end of m1 | 17.2 | |||
i1 width | 1.1 | |||
i2 width | 1.1 | |||
i3 width | 1.5 | |||
Canine anteroposterior width | 3.5 | |||
p1 length × width | 1.5×? | |||
p2 length × width | 5.1×? | 5.5×2.5 | (6.5)×- | |
p3 length × width | ? | BSP-1967-VI 746 | 6.9×3.0 | (7.1)×- |
p4 length × width | 8.1×3.1 | 9.0×4.2 | 8.9×4.0 | (7.5)×- |
p4 height of principle cusp from posterior base of crown | 5 | BSP-1967-VI 745 | ||
m1 length × width | 8.7×3.9 | 11.3×5.1 | 11.4×5.5 | (8.4)×- |
m1 height of protoconid from anterior crown base | 4.4 | |||
m1 trigonid length × width | 5.6×3.9 | |||
m1 talonid length × width | 3.1×3.1 | 3.1×- | ||
m2 length × width | 3.9×2.5 |
Fig. 7 Comparison of the upper and lower dentitions of early fossil hyaenids A-C. lower premolar 4 and molars in lingual (A), labial (B), and occlusal (C) views; D. upper premolar 4 and molars in occlusal views
Fig. 8 Hyaenid phylogeny Single most parsimonious tree from parsimony analysis of 44 morphological characters in 11 taxa using the implicit enumeration method in TNT. Dark notches indicate clade synapomorphies and taxon autapomorphies, with character number followed by character state in parentheses. Labeled nodes correspond to synapomorphies listed in Table S2. The full data matrix is available in MorphoBank (http://dx.doi.org/10.7934/P1088)
[1] |
Bernor R L, Tobien H, 1990. The mammalian geochronology and biogeography of Paşalar (Middle Miocene, Turkey). J Hum Evol, 19: 551-568
DOI URL |
[2] | Colbert E H, 1939. Carnivora of the Tung Gur Formation of Mongolia. Bull Am Mus Nat Hist, 76: 47-81 |
[3] | Crusafont-Pairó M, Petter G, 1969. Contribution a l’etude des Hyaenidae. La sous-famille des Ictitheriinae. Ann Paleontol Vertebr, 55: 87-127 |
[4] | de Beaumont G, 1968. Observations sur les Herpestinae (Viverridae, Carnivora) de l’oligocene superieur avec quelques remarques sur des Hyaenidae du neogene. Arch Sci, 20: 79-107 |
[5] | de Beaumont G, 1969. Breves remarques sur Plioviverrops Kretzoi (Carnivora). Bull Soc Vaudoise Sci Nat, 70(6): 247-253 |
[6] | de Beaumont G, Mein P, 1972. Recherches sur le genre Plioviverrops Kretzoi (Carnivora, ?Hyaenidae). Arch Sci Geneve, 25: 383-394 |
[7] | de Vries J L, Pirk C W W, Bateman P W, et al. 2011. Extension of the diet of an extreme foraging specialist, the aardwolf (Proteles cristata). Afr Zool, 46: 194-196 |
[8] | Deng T, Qiu Z X, Wang B Y, et al. 2013. Chapter 9. Late Cenozoic biostratigraphy of the Linxia Basin, northwestern China. In: Wang X M, Flynn L J, Fortelius M eds. Fossil Mammals of Asia: Neogene Biostratigraphy and Chronology. New York: Columbia University Press. 243-273 |
[9] | Depéret C, 1892. La fauna de mammiféres miocénes de La Grive-Saint-Alban (Isere). Arch Mus Hist Nat Lyon, 5: 1-89 |
[10] |
Fang X M, Wang J Y, Zhang W L, et al. 2016. Tectonosedimentary evolution model of an intracontinental flexural (foreland) basin for paleoclimatic research. Glob Planet Change, 145: 78-97
DOI URL |
[11] | Filhol H, 1883. Note sur quelques Mammifères fossiles de l’époque miocène. Publ Mus Confluences, 3: 1-99 |
[12] | Forsyth-Major C I, 1903. III.-New Carnivoka from the Middle Miocene of La Grive-Saint-Alban, Isère, France. Geol Mag, 10: 534-538 |
[13] | Gaillard C, 1899. Mammifères miocènes nouveaux ou peu connus de la Grive-Saint-Alban (Isère). Publ Mus Confluences, 7: 1-11 |
[14] | Galiano H, Frailey D, 1977. Chasmaporthetes kani, new species from China, with remarks on phylogenetic relationships of genera within the Hyaenidae (Mammalia, Carnivora). Am Mus Novit, 2632: 1-16 |
[15] | Gaudry A, 1862. Animaux fossiles et géologie de l’Attique: d’après les recherches faites en 1855-56 et en 1860 sous les auspices de l’Académie des Sciences. Paris: F. Savy. 1-474 |
[16] |
Granger D E, Gibbon R J, Kuman K, et al. 2015. New cosmogenic burial ages for Sterkfontein Member 2 Australopithecus and Member 5 Oldowan. Nature, 522: 85-88
DOI URL |
[17] | Gregory W K, 1910. The orders of mammals. Bull Am Mus Nat Hist, 27: 1-524 |
[18] | Gregory W K, Hellman M, 1939. On the evolution and major classification of the civets (Viverridae) and allied fossil and recent Carnivora: a phylogenetic study of the skull and dentition. Proc Am Philos Soc, 81: 309-392 |
[19] | Hendey Q B, 1974. New fossil carnivores from the Swartkrans australopithecine site (Mammalia: Carnivora). Ann Transvaal Mus, 29: 27-47 |
[20] | Hough M J, 1953. Auditory region in North American fossil Felidae; its significance in phylogeny. US Geol Surv Prof Pap, 243-G: 95-115 |
[21] |
Hunt Jr R M, 1974. The auditory bulla in Carnivora: an anatomical basis for reappraisal of carnivore evolution. J Morphol, 143: 21-75
PMID |
[22] | Hunt Jr R M, 1987. Evolution of the aeluroid Carnivora: significance of auditory structure in the nimravid cat Dinictis. Am Mus Novit, 2886: 1-74 |
[23] | Hunt Jr R M, 1989. Evolution of the aeluroid Carnivora: significance of the ventral promontorial process of the petrosal, and the origin of basicranial patterns in the living families. Am Mus Novit, 2930: 1-32 |
[24] | Hunt Jr R M, 1991. Evolution of the aeluroid Carnivora: viverrid affinities of the Miocene carnivoran Herpestides. Am Mus Novit, 3023: 1-34 |
[25] | Hunt Jr R M, 1998. Evolution of the aeluroid Carnivora: diversity of the earliest aeluroids from Eurasia (Quercy, Hsanda-Gol) and the origin of felids. Am Mus Novit, 3252: 1-65 |
[26] |
Hunt Jr R M, 2001. Basicranial anatomy of the living linsangs Prionodon and Poiana (Mammalia, Carnivora, Viverridae), with comments on the early evolution of aeluroid carnivorans. Am Mus Novit, 3330: 1-24
DOI URL |
[27] | Hunt Jr R M, Solounias N, 1991. Evolution of the aeluroid Carnivora: hyaenid affinities of the Miocene carnivoran Tungurictis spocki from Inner Mongolia. Am Mus Novit, 3030: 1-25 |
[28] | Hunt Jr R M, Tedford R H, 1993. Phylogenetic relationships within the aeluroid Carnivora and implications of their temporal and geographic distribution. In: Szalay F, Novacek M, McKenna M eds. Mammal Phylogeny: Placentals. New York: Springer-Verlag. 53-73 |
[29] | ICZN, 1999. International Code of Zoological Nomenclature. 4th ed [available online at http://www.iczn.org/iczn/index.jsp] |
[30] | Jenks S, Werdelin L, 1998. Chapter 2:taxonomy and systematics of living hyaenas (Family Hyaenidae). In: Mills G, Hofer H eds. IUCN, Hyaenas: Status Survey and Conservation Action Plan. Oxford: Information Press. 8-17 |
[31] |
Jin Z D, Li F C, Cao J J, et al. 2006. Geochemistry of Daihai Lake sediments, Inner Mongolia, north China: implications for provenance, sedimentary sorting, and catchment weathering. Geomorphology, 80: 147-163
DOI URL |
[32] |
Joeckel R M, 1998. Unique frontal sinuses in fossil and living Hyaenidae (Mammalia, Carnivora): description and interpretation. J Vert Paleont, 18: 627-639
DOI URL |
[33] | Koehler C E, Richardson P R K, 1990. Proteles cristatus. Mamm Species, 363: 1-6 |
[34] |
Koepfli K-P, Jenks S M, Eizirik E, et al. 2006. Molecular systematics of the Hyaenidae: relationships of a relictual lineage resolved by a molecular supermatrix. Mol Phylogenet Evol, 38: 603-620
DOI URL |
[35] | Kretzoi M, 1938. Die Raubtiere von Gombaszög nebst einer übersicht der Gesamtfauna (Ein beitrag zur stratigraphie des Altquartaers). Ann Mus Natl Hung, 31: 88-157 |
[36] | Kretzoi M, 1945. Bemerkungen über das Raubtiersystem. Ann Mus Natl Hung, 38: 59-83 |
[37] |
Kruuk H, Sands W A, 1972. The aardwolf (Proteles cristata Sparrman) 1783 as predator of termites. Afr J Ecol, 10: 211-227
DOI URL |
[38] | Kurtén B, 1976. Fossil Carnivora from the Late Tertiary of Bled Douarah and Cherichira, Tunisia. Notes Serv Geol, 42: 177-214 |
[39] | Merriam J C, Stock C, 1932. The Felidae of Rancho La Brea. Carnegie Inst Wash Publ, 422: 1-436 |
[40] | Pei W C, 1934. On the Carnivora from locality 1 of Choukoutien. Palaeont Sin Ser C, 8: 1-217 |
[41] | Pilgrim G E, Hopwood A T, 1931. Catalogue of the Pontian Carnivora of Europe in the Department of Geology. London:Printed by order of the Trustees of the British Museum. 1-174 |
[42] | Qiu Z X, Ye J, Cao J X, 1988. A new species of Percrocuta from Tongxin, Ningxia. Vert PalAsiat, 26: 116-127 |
[43] | Qiu Z X, Deng T, Wang B Y, 2004. Early Pleistocene mammalian fauna from Longdan, Dongxiang, Gansu, China. Palaeont Sin, New Ser C, 27: 1-198 |
[44] |
Radinsky L, 1975. Viverrid neuroanatomy: phylogenetic and behavioral implications. J Mammal, 56: 130-150
PMID |
[45] |
Radinsky L B, 1982. Evolution of skull shape in carnivores. 3. The origin and early radiation of the modern carnivore families. Paleobiology, 8: 177-195
DOI URL |
[46] |
Rao H Y, Yang Y M, Liu J Y, et al. 2020. Palaeoproteomic analysis of Pleistocene cave hyenas from east Asia. Sci Rep, 10: 16674
DOI URL |
[47] | Schmidt-Kittler N, 1976. Raubtiere aus dem Jungtertiär Kleinasiens. Palaeontogr Abt A, 155: 1-131 |
[48] | Sheng G L, Soubrier J, Liu J Y, et al. 2014. Pleistocene Chinese cave hyenas and the recent Eurasian history of the spotted hyena, Crocuta crocuta. Mol Ecol, 23: 522-533 |
[49] | Solounias N, 1981. The Turolian Fauna from the Island of Samos, Greece. Basel: S. Karger AG. 1-232 |
[50] | Thenius E, 1966. Zur stammesgeschichte der hyanen (Carnivora, Mammalia). Z Saugertierkd, 31: 293-300 |
[51] | Torre D, 1989. Plioviverrops faventinus n. sp., a new carnivore of late Messinian age. Boll Della Soc Paleont Ital, 28: 323-327 |
[52] | Turner A, 1993. New fossil carnivore remains. In: Brain C K ed. Swartkrans: a Cave’s Chronicle of Early Man. Transvaal Mus Monogr, 8: 151-165 |
[53] | Turner A, 1997. New fossil carnivore remains from Sterkfontein hominid site (Mammalia: Carnivora). Ann Transvaal Mus, 34: 319-347 |
[54] |
Turner A, Antón M, Werdelin L, 2008. Taxonomy and evolutionary patterns in the fossil Hyaenidae of Europe. Geobios, 41: 677-687
DOI URL |
[55] | Villalta Comella J F de, Crusafont-Pairó M, 1943. Los vertebrados del mioceno continental de la cuenca Valles-Panades (provincia de Barcelona), I, Insectivoros; II, Carnivoros. Bol Inst Geol Min Esp, 56: 145-336 |
[56] | Villalta Comella J F de, Crusafont-Pairó M, 1945. Nuevas aportaciones al conocimiento de los carnivoros pontienses del Valles-Penedes. Barcelona: Inst Geológico, Pub VII (Misc Almer Part 1). 81-121 |
[57] | Viret J, 1951. Catalogue critique de la faune des mammiferes miocenes de la Grive Saint-Alban (Isere); premiere partie, chiropteres, carnivores, edentes pholidotes. Publ Mus Confluences, 3: 1-104 |
[58] | Wang X M, 2004. New materials of Tungurictis (Hyaenidae, Carnivora) from Tunggur Formation, Nei Mongol. Vert PalAsiat, 42: 144-153 |
[59] | Wang X M, Flynn L J, Fortelius M, 2013. Toward a continental Asian biostratigraphic and geochronologic framework. In: Wang X M, Flynn L J, Fortelius M eds. Fossil Mammals of Asia: Neogene Biostratigraphy and Chronology. New York: Columbia University Press. 1-25 |
[60] |
Wang X M, Tseng Z J, Wu W Y, et al. 2020. A new species of Tungurictis Colbert, 1939 (Carnivora, Hyaenidae) from the Middle Miocene of Junggar Basin, northwestern China and the early divergence of basal hyaenids in East Asia. Geodiversitas, 42: 29-45
DOI URL |
[61] |
Werdelin L, 1988. Studies of fossil hyaenas: the genera Thalassictis Gervais ex Nordmann, Palhyaena Gervais, Hyaenictitherium Kretzoi, Lycyaena Hensel and Palinhyaena Qiu, Huang & Guo. Zool J Linn Soc, 92: 211-265
DOI URL |
[62] | Werdelin L, Solounias N, 1991. The Hyaenidae: taxonomy, systematics and evolution. Fossils Strata, 30: 1-104 |
[63] |
Westbury M V, De Cahsan B, Dalerum F, et al. 2019. Aardwolf population diversity and phylogenetic positioning inferred using complete mitochondrial genomes. Afr J Wildl Res, 49: 27-33
DOI |
[64] |
Westbury M V, Le Duc D, Duchêne D A, et al. 2021. Ecological specialization and evolutionary reticulation in extant Hyaenidae. Mol Biol Evol, 1-14, doi: 10.1093/molbev/msab055
DOI |
[65] | Winge H, Deichmann E, Allen G M, et al. 1941. The interrelationships of the mammalian genera. Vol. 2, Rodentia, Carnivora, Primates. Copenhagen: C.A. Reitzel. 1-418 |
[1] | 王伴月. 副竹鼠(拟速掘鼠亚科,鼠超科)一新种在甘肃临夏盆地的发现. 古脊椎动物学报, 2022, 60(4): 271-277. |
[2] | 王伴月, 邱占祥. 豪猪化石在临夏盆地的新发现. 古脊椎动物学报, 2020, 58(3): 204-220. |
[3] | 熊武阳. 陕西府谷晚中新世巨鬣狗(Dinocrocuta gigantea)(食肉目:鬣狗科)颅基部形态研究. 古脊椎动物学报, 2019, 57(4): 274-307. |
[4] | 邓涛,卢小康,史勤勤,孙博阳,王世骐. 甘肃临夏盆地中中新世皇冠鹿一新种. 古脊椎动物学报, 2014, 52(2): 170-182. |
[5] | 邓涛. 临夏盆地早中新世上庄组的巨獠犀门齿化石. 古脊椎动物学报, 2013, 51(2): 131-140. |
[6] | 邓涛. 甘肃东乡龙担的长鼻三趾马头骨化石——龙担哺乳动物群补充报道之三. 古脊椎动物学报, 2012, 50(1): 74-84. |
[7] | 陈少坤,邓涛,何文,陈善勤. 记临夏盆地维氏大唇犀一牙齿异常个体. 古脊椎动物学报, 2011, 49(2): 223-228. |
[8] | 曾志杰,何文,陈善勤. 甘肃临夏盆地晚中新世鬣狗类群头骨的几何形态测量学及生态形态学分析. 古脊椎动物学报, 2010, 48(3): 235-246. |
[9] | 邓 涛 , 何 文 , 陈善勤. 甘肃临夏盆地晚中新世貘类化石(奇蹄目、貘科)一新种. 古脊椎动物学报, 2008, 46(3): 190-209. |
[10] | 曾志杰 , 金昌柱 , 刘金毅 , 郑龙亭 , 孙承凯. 安徽淮南晚新生代鬣狗类化石. 古脊椎动物学报, 2008, 46(2): 133-146. |
[11] | 邓 涛 , 邱占祥. 黑犀(奇蹄目,犀科)化石在中国的首次发现. 古脊椎动物学报, 2007, 45(4): 287-306. |
[12] | Ki ANDERSSON, Lars WERDELIN. 陕西蓝田晚中新世食肉类. 古脊椎动物学报, 2005, 43(04): 256-271. |
[13] | 邱占祥, 王伴月, 邓 涛. 甘肃临夏盆地牙沟的哺乳动物化石及有关地层问题. 古脊椎动物学报, 2004, 43(04): 276-296. |
[14] | 王晓鸣. 内蒙古中新世通古尔组 Tungurictis (Carnivora ::Hyaenidae) 的新材料1). 古脊椎动物学报, 2004, 43(02): 144-153. |
[15] | 邓 涛. 临夏盆地晚中新世维氏大唇犀(奇蹄目,犀科) 肢骨化石. 古脊椎动物学报, 2002, 40(04): 305-316. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||