古脊椎动物学报 ›› 2023, Vol. 61 ›› Issue (4): 284-316.DOI: 10.19615/j.cnki.2096-9899.230927CSTR: 32090.14.j.cnki.2096-9899.230927
收稿日期:
2023-05-29
出版日期:
2023-10-20
发布日期:
2023-10-25
作者简介:
wangbanyue@ivpp.ac.cn
基金资助:
WANG Ban-Yue(), QIU Zhan-Xiang
Received:
2023-05-29
Published:
2023-10-20
Online:
2023-10-25
摘要:
记述了中国科学院古脊椎动物与古人类研究所一野外队于2003年在甘肃临夏盆地牙沟附近的椒子沟组底部发现的小哺乳动物化石,计3目13科17个属。这个小哺乳动物化石群是中亚和东亚典型的渐新世组合。其中的14属(约为总数的82%)是亚洲渐新世所共有的,4个属(Ordolagus , Tataromys , Tsagonomys 和Bagacricetodon )和Eucricetodon 属的4个种的时代分布仅限于渐新世,Bagacricetodon 属限于晚渐新世,Glis 和Eomyodon 两属在晚渐新世时首次出现。根据小哺乳动物化石组合,牙沟地区椒子沟组底部的时代可能为晚渐新世,这与根据大哺乳动物化石得出的结论一致。与中亚和东亚地区其他已知的晚渐新世哺乳动物群比较,由于该动物群中具有两个原仅在始新世出现的属(Anatolechinos 和Gobiomys )和缺少较进步的属,其时代比内蒙古乌兰塔塔尔带III和蒙古湖谷地区的生物带C稍早。这与现在对毛沟剖面的古地磁解释大致一致,即椒子沟组的下界可能与Chron C10r (~29 Ma)相当。牙沟动物群包含有大量喜欢干旱的zapodines, ctenodactylids, cricetids, lagomorphs和穴居的Tsaganomys 化石,而且产化石地层的岩性主要是由含有石膏的褐红色泥岩组成,这些都倾向于表明牙沟地区在晚渐新世时主要为半干旱的林地-灌木林地环境。在晚渐新世时,在亚洲和欧洲之间共有4属小哺乳动物,而在亚洲和北美洲只共有一属动物,这表明在晚渐新世时,欧亚之间动物群的交流要比亚洲与北美之间的多,这可能与土尔盖海峡在晚渐新世时消失有关。
中图分类号:
王伴月, 邱占祥. 甘肃临夏盆地牙沟地区椒子沟组底部的小哺乳动物化石. 古脊椎动物学报, 2023, 61(4): 284-316.
WANG Ban-Yue, QIU Zhan-Xiang. Micromammal fossils from the basal part of the Jiaozigou Formation in Yagou area, Linxia Basin, Gansu Province. Vertebrata Palasiatica, 2023, 61(4): 284-316.
Fig. 1 Map showing the localities yielding mammal fossils from the Jiaozigou Formation near Yagou in the Linxia Basin Study area is shown by a black square in the inserted quadrangle [GS(2020)3185] Localities 1‒5: 1. LX 200301, 2. LX 200303, 3. LX 200302, 4. LX 200213, 5. LX 201502‒201504 and 201507‒201510. For further information on localities 1‒4 see Table 1 of this paper and for locality 5 see Table 1 of Wang et al. (2023)
IVPP Loc. | Localities yielding mammal fossils | GPS |
---|---|---|
LX 200301 | micromammals, Nanlong Town, Linxia City | N35°36'34.9", E103°16'25.2", H1950 m |
LX 200302 | micromammals, Dongyuan Town, Dongxiang Autonomous County | N35°35'47.4", E103°16'43.5", H1960 m |
LX 200303 | micromammals, Nanlong Town, Linxia City | N35°36'37.7", E103°16'23.5", H1930 m |
LX 200213 | macromammals, Dongyuan Town, Dongxiang Autonomous County | N35°35'47.9", E103°16'39.2", H1973 m |
Table 1 Localities yielding mammal fossils in lower part of Jiaozigou Formation in Yagou, Linxia Basin
IVPP Loc. | Localities yielding mammal fossils | GPS |
---|---|---|
LX 200301 | micromammals, Nanlong Town, Linxia City | N35°36'34.9", E103°16'25.2", H1950 m |
LX 200302 | micromammals, Dongyuan Town, Dongxiang Autonomous County | N35°35'47.4", E103°16'43.5", H1960 m |
LX 200303 | micromammals, Nanlong Town, Linxia City | N35°36'37.7", E103°16'23.5", H1930 m |
LX 200213 | macromammals, Dongyuan Town, Dongxiang Autonomous County | N35°35'47.9", E103°16'39.2", H1973 m |
Fig. 2 Cenozoic strata in Yagou A. measured section of Cenozoic strata in Yagou (from Qiu et al., 2004b:fig. 1), the bottom 60 m of Dongxiang Formation should be Shangzhuang Formation in the new paper (Qiu et al., 2023); B. disconformity between the Jiaozigou Formation and the Tala Formation in Yagou area, Linxia Basin. Lower part of the Jiaozigou Formation (upper) and upper part of the Tala Formation (lower) with the boundary designated by arrow (←) (photo looking northwestward and taken on September 7, 2003 by Prof. T. Deng)
Fig. 3 The lipotyphla from Yagou area A‒C. Amphechinus sp.: A. left m1 (IVPP V26969), B. left m1 (V26968.1), C. trigonid of left m2 (V26968.2); D. left M2 (V26970) of cf. Anatolechinos sp.; E. right M2 (V26971) of Zaraalestes sp.; F‒I. Tupaiodontinae indet.: F. right i2/i3/c1? (V26972.1), G. left p2 (V26972.2), H. right p3 (V26973), I. left p4 (V26972.4); A‒G, H2, I. occlusal view, H1. lingual view, H3. buccal view; scale: +. A‒E, #. F‒I
Fig. 4 Lagomorpha and Rodentia from Yagou area A. left upper cheek tooth (IVPP V27881) of Ordolagus sp.; B‒I. Desmatolagus sp.: B. right P2 (V26974.1), C. right P3 (V26974.2), D. right P4 (V26794.6), E. right M1 (V26974.8), F. right M2 (V26974.9), G. right p3 (V26975.3), H. left p4/m1/2 (V26975.4), I. right m3 (V26975.5); J. right P4/M1/2 (V27882) of cf. Sinolagomys sp.; K. left M1/2 (V26977) of Prosciurus sp.; L. right upper molar (V26978) of Aplodontidae indet.; M. right M3 (V26979) of cf. Irtyshogaulus sp.; N. left m2 (V26980) of Glis sp.; O. left p4 (V26981) of cf. Eomyodon sp.; occlusal view; scale: +. A‒J, $. K, M, #. L, N, O
Tooth | Length | Width | ||||
---|---|---|---|---|---|---|
N | Range | Average | N | Range | Average | |
P2 | 1 | 1.00 | 1 | 1.80 | ||
P3 | 3 | 1.20‒1.30 | 1.27 | 3 | 2.70+ ‒ 2.80 | 2.77+ |
P4 | 4 | 1.05‒1.60 | 1.31 | 1 | 2.8e | |
M1 | 1 | 1.30 | 1 | 3.80 | ||
M2 | 2 | 1.20 | 1.20 | 2 | 3.20 | 3.20 |
p3 | 1 | 1.20 | 1 | 1.30 | ||
p4/m1/2 | 6 | 1.50‒1.90 | 1.64 | tr. W 6 | 1.50‒1.90 | 1.72 |
ta. W 6 | 1.10‒1.50 | 1.22 | ||||
m3 | 5 | 0.70‒0.80 | 0.75 | 6 | 0.90‒1.00 | 0.94 |
Table 2 Measurements of cheek teeth of Desmatolagus sp. from the lower part of the Jiaozigou Formation in Yagou area, Linxia Basin (mm)
Tooth | Length | Width | ||||
---|---|---|---|---|---|---|
N | Range | Average | N | Range | Average | |
P2 | 1 | 1.00 | 1 | 1.80 | ||
P3 | 3 | 1.20‒1.30 | 1.27 | 3 | 2.70+ ‒ 2.80 | 2.77+ |
P4 | 4 | 1.05‒1.60 | 1.31 | 1 | 2.8e | |
M1 | 1 | 1.30 | 1 | 3.80 | ||
M2 | 2 | 1.20 | 1.20 | 2 | 3.20 | 3.20 |
p3 | 1 | 1.20 | 1 | 1.30 | ||
p4/m1/2 | 6 | 1.50‒1.90 | 1.64 | tr. W 6 | 1.50‒1.90 | 1.72 |
ta. W 6 | 1.10‒1.50 | 1.22 | ||||
m3 | 5 | 0.70‒0.80 | 0.75 | 6 | 0.90‒1.00 | 0.94 |
Fig. 5 Allosminthus and Parasminthus from Yagou area A‒C. Allosminthus sp.: A. right M1 (V27002), B. right M2 (V27007.1), C. left m1 (V27006); D‒I. Parasminthus tangingoli : D. left P4 (V26982.1), E. left M1 (V26984.3), F. left M2 (V26984.4), G. left m1 (V26982.14), H. right m2 (V26984.12, reverse), I. right m3 (V26984.16, reverse); J. left m3 (V28426) of P. asiaecentralis ; K‒O. P. parvulus : K. right M1 (V26985.2), L. left M2 (V26985.5), M. left m1 (V26985.7), N. left m2 (V26985.12), O. left m3 (V26985.21); occlusal view; scale: #. A‒C, +. D‒O
Tooth | Length | Width | ||||
---|---|---|---|---|---|---|
N | Range | Average | N | Range | Average | |
P4 | 4 | 0.60‒0.70 | 0.64 | 4 | 0.60‒0.75 | 0.68 |
M1 | 3 | 1.25‒1.35 | 1.30 | 3 | 1.06‒1.20 | 1.15 |
M2 | 5 | 1.10‒1.35 | 1.24 | 7 | 0.90‒1.30 | 1.11 |
m1 | 8 | 1.20‒1.40 | 1.31 | 8 | 0.85‒1.05 | 0.97 |
m2 | 12 | 1.22‒1.50 | 1.35 | 13 | 0.81‒1.15 | 1.03 |
m3 | 6 | 1.05‒1.50 | 1.24 | 6 | 0.85‒1.20 | 1.03 |
Table 3 Measurements of cheek teeth of Parasminthus tangingoli from the lower part of the Jiaozigou Formation in Yagou, Linxia Basin (mm)
Tooth | Length | Width | ||||
---|---|---|---|---|---|---|
N | Range | Average | N | Range | Average | |
P4 | 4 | 0.60‒0.70 | 0.64 | 4 | 0.60‒0.75 | 0.68 |
M1 | 3 | 1.25‒1.35 | 1.30 | 3 | 1.06‒1.20 | 1.15 |
M2 | 5 | 1.10‒1.35 | 1.24 | 7 | 0.90‒1.30 | 1.11 |
m1 | 8 | 1.20‒1.40 | 1.31 | 8 | 0.85‒1.05 | 0.97 |
m2 | 12 | 1.22‒1.50 | 1.35 | 13 | 0.81‒1.15 | 1.03 |
m3 | 6 | 1.05‒1.50 | 1.24 | 6 | 0.85‒1.20 | 1.03 |
Tooth | Length | Width | ||||
---|---|---|---|---|---|---|
N | Range | Average | N | Range | Average | |
M1 | 3 | 1.00‒1.16 | 1.07 | 3 | 0.92‒1.00 | 0.96 |
M2 | 5 | 0.80‒1.05 | 0.97 | 6 | 0.68‒1.00 | 0.90 |
m1 | 5 | 0.90‒1.10 | 1.06 | 6 | 0.50‒0.80 | 0.73 |
m2 | 9 | 0.95‒1.15 | 1.07 | 12 | 0.65‒1.10 | 0.85 |
m3 | 3 | 0.80‒0.95 | 0.88 | 3 | 0.70‒0.80 | 0.75 |
Table 4 Measurements of cheek teeth of Parasminthus parvulus from the lower part of the Jiaozigou Formation in Yagou, Linxia Basin (mm)
Tooth | Length | Width | ||||
---|---|---|---|---|---|---|
N | Range | Average | N | Range | Average | |
M1 | 3 | 1.00‒1.16 | 1.07 | 3 | 0.92‒1.00 | 0.96 |
M2 | 5 | 0.80‒1.05 | 0.97 | 6 | 0.68‒1.00 | 0.90 |
m1 | 5 | 0.90‒1.10 | 1.06 | 6 | 0.50‒0.80 | 0.73 |
m2 | 9 | 0.95‒1.15 | 1.07 | 12 | 0.65‒1.10 | 0.85 |
m3 | 3 | 0.80‒0.95 | 0.88 | 3 | 0.70‒0.80 | 0.75 |
Fig. 6 Tataromys and Gobiomys from Yagou area A‒E. Tataromys plicidens : A. right P4 (IVPP V26991.1), B. left M1/2 (V26990.1), C. left M1/2 (V26989.1), D. right M3 (V26991.5), E. right m1/2 (V26989.2); F‒G. T. sigmodon : F. right P4 (V26992), G. right M1/2 (V26993); H‒N. T. minor : H. left P4 (V26997.1), I. right M1/2 (V26995.4), J. right M1/2 (V26995.5), K. left p4 (V26995.8), L. right m1/2 (V26995.14), M. left m3 (V26995.16), N. left m3 (V26994); O. left M1/2 (V26988) of cf. Gobiomys sp.; occlusal view; scale: *. A‒G, +. H‒N, &. O
Tooth | Length | Width | ||||
---|---|---|---|---|---|---|
N | Range | Average | N | Range | Average | |
P4 | 5 | 1.00‒1.20 | 1.04 | 5 | 1.25‒1.50 | 1.34 |
M1/2 | 5 | 1.30‒1.50 | 1.40 | 6 | 1.30‒1.40 | 1.36 |
M3 | 1 | 1.20+ | ||||
p4 | 2 | 1.00 | 2 | 0.90 | ||
m1/2 | 5 | 1.30‒1.70 | 1.54 | 8 | 1.05‒1.40 | 1.18 |
m3 | 2 | 1.67‒2.10 | 1.89 | 3 | 1.20‒1.5 | 1.33 |
Table 5 Measurements of cheek teeth of Tataromys minor from the lower part of the Jiaozigou Formation in Yagou area, Linxia Basin (mm)
Tooth | Length | Width | ||||
---|---|---|---|---|---|---|
N | Range | Average | N | Range | Average | |
P4 | 5 | 1.00‒1.20 | 1.04 | 5 | 1.25‒1.50 | 1.34 |
M1/2 | 5 | 1.30‒1.50 | 1.40 | 6 | 1.30‒1.40 | 1.36 |
M3 | 1 | 1.20+ | ||||
p4 | 2 | 1.00 | 2 | 0.90 | ||
m1/2 | 5 | 1.30‒1.70 | 1.54 | 8 | 1.05‒1.40 | 1.18 |
m3 | 2 | 1.67‒2.10 | 1.89 | 3 | 1.20‒1.5 | 1.33 |
Fig. 7 Tsaganomys altaicus from Yagou area A. left upper cheek tooth (V26998.1) in occlusal (A1) and posterolingual (A2) views; B. left upper cheek tooth (V26999) in anterolingual (B1), anterior (B2) and posterobuccal (B3) views; C. right I2 (V26998.2) in right lateral (C1) and labial (C2) views; scale: $. A, B, #. C
Fig. 8 Eucricetodon , Bagacricetodon and Cricetidae gen. et sp. indet. from Yagou area A‒E. Eucricetodon asiaticus : A. right M1 (V27000.1), B. right m1 (V27000.5), C. left m2 (V27000.6), D. left m2 (V27001.2), E. right m3 (V27001.5); F‒H. E. bagus : F. right M1 (V27003.3), G. right m1 (V27003.4), H. left m2 (V27003.5); I‒K. E. caducus : I. left M1 (V27004.1), J. left M2 (V27004.2), K. right m1 (V27004.3); L‒M. E. jilantaiensis : L. right M1 (V27005), M. left M3 (V30714.1); N. right m3 (V27008) of Bagacricetodon sp.; O. left m1 (V27009) of Cricetidae gen. et sp. indet.; occlusal view; scale: +. A‒E, *. F‒K, #. L‒O
Fig. 9 Chronological range of micromammals from the basal part of the Jiaozigou Formation in Yagou area, Linxia Basin Blue shade indicates age of the Yagou Fauna
[1] | Aymard A, 1850. Concernant les restes de mammiferes fossils recueillis dans le calcaire miocène des environs du Puy. Ann Soc Agric Puy, 14: 104-114 |
[2] | Berggren W A, Prothero D R, 1992. Eocene-Oligocene climatic and biotic evolution. In: Prothero D R, Berggren W A eds. Eocene-Oligocene Climatic and Biotic Evolution. NJ: Princeton University Press. 1-28 |
[3] | Bohlin B, 1937. Oberoligozäne Säugetiere aus dem Shargaltein-Tal (western Kansu). Palaeont Sin, New Ser C, 3: 1-66 |
[4] | Bohlin B, 1942. The fossil mammals from the Tertiary deposit of Taben-buluk, western Kansu, Part I: Insectivora and Lagomorpha. Palaeont Sin, New Ser C, 8(a): 1-113 |
[5] | Bohlin B, 1946. The fossil mammals from the Tertiary deposit of Taben-buluk, western Kansu, Part II: Simplicidentata, Carnivora, Artiodactyla, Perissodactyla, and Primates. Palaeont Sin, New Ser C, 8(b): 1-259 |
[6] | Bowdich T E, 1821. An Analysis of the Natural Classifications of Mammalia for the Use of Students and Travelers. Paris: J Smith. 1-115 |
[7] | Brandt J F, 1855. Beiträge zur nähern Kenntniss der Säugethiere Russland’s. Mém Acad Imp Sci St Pétersbourg, Ser 6, 9: 1-375 |
[8] | Brisson A D, 1762. Regnum animale in classes IX.distributum, sive synopsis methodica. Leiden: T. Haak. 1-296 |
[9] | Butler P M, 1988. Phylogeny of the insectivores. In: Benton M J ed.ed. The Phylogeny and Classification of the Tetrapods. Vol 2: Mammals. Oxford: Clarendon Press. 117-141 |
[10] | Chen W, Gao W, 2000. Cricetinae Fischer, 1817. In: Luo Z X, Chen W, Gao W et al. eds. Fauna Sinica, Vol. 6, Part 3. Beijing: Science Press. 20-90 |
[11] | Cope E D, 1881. Review of the Rodentia of the Miocene period of North America. Bull US Geol Geogr Surv Terr, 6(2): 361-386 |
[12] | Daams R, 1999. Family Gliridae. In: Rössner G E, Heissig K eds. The Miocene Land Mammals of Europe. München: Verlag Dr. Friendrich Pfeil. 301-318 |
[13] | Daams R, de Bruijn H, 1995. A classification of the Gliridae (Rodentia) on the basis of dental morphology. Hystrix (N S), 6(1-2): 3-50 |
[14] | Daxner-Höck G, Badamgarav D, Erbajeva M, 2010. Oligocene stratigraphy based on a sediment-basalt association in Central Mongolia (Taatsiin Gol and Taatsiin Tsagaan Nuur area, Valley of Lakes): review of a Mongolian-Austrian Project. Vert PalAsiat, 48(4): 348-366 |
[15] | Daxner-Höck G, Badamgarav D, Maridet O, 2014. Dipodidae (Rodentia, Mammalia) from the Oligocene and Early Miocene of Mongolia. Ann Nat Mus, Wien, Ser A, 116: 131-214 |
[16] |
Daxner-Höck G, Badamgarav D, Barsbold R et al., 2017. Oligocene stratigraphy across the Eocene and Miocene boundaries in the Valley of Lakes (Mongolia). Palaeobio Palaeoenv, 97(1): 111-218
DOI PMID |
[17] | De Muizon, 1977. Révision des Lagomorphes des couches à Baluchitherium (Oligocene supérieur) de San-Tao-Ho (Ordos, Chine). Bull Mus Nat Hist Natl, 488: 265-294 |
[18] | Deng T, Wang X M, Ni X J et al., 2004. Cenozoic stratigraphic sequence of the Linxia Basin in Gansu, China and its evidence from mammal fossils. Vert PalAsiat, 42(1): 45-66 |
[19] | Deng T, Qiu Z X, Wang B Y et al., 2013. 9. Late Cenozoic biostratigraphy of the Linxia Basin, Northwestern China. In: Wang X M, Flynn L J, Fortelius M eds. Fossil Mammals of Asia. New York: Columbia University Press. 243-273 |
[20] | Deng T, Lu X K, Wang S Q et al., 2021. An Oligocene giant rhino provides insights into Paraceratherium evolution. Commun Biol, doi: 10.1038/s42003-021-02170-6 |
[21] | Emry R J, Lucas S G, Tyutkova L A et al., 1998. The Ergilian-Shandgolian (Eocene-Oliocene) transition in the Zaysan Basin, Kazakstan. In: Beard K C, Dawson M R eds. Dawn of the Age of Mammals in Asia. Bull Carnegie Mus Nat Hist, 34: 298-312 |
[22] | Engesser B, 1987. New Eomyidae, Dipodidae, and Cricetidae (Rodentia, Mammalia) of the Lower Frenshwater Molasse of Switzeland and Savoy. Eclogae Geol Helv, 80(3): 943-994 |
[23] | Engesser B, 1990. Die Eomyidae (Rodentia, Mammalia) der Molasse der Schweiz und Savoyens. Schweiz Paläont Abh, 112: 1-144 |
[24] | Erbajeva M, Daxner-Höck G, 2014. The most prominent Lagomorpha from the Oligocene and Early Miocene of Mongolia. Ann Naturhist Mus Wien, Ser A, 116: 215-245 |
[25] | Fang X M, Li J J, Wang J L et al., 1995. Chapter 2. Records of the uplift of the Qinghai-Xizang (Tibetan) Plateau and long-term climate change. In: Li J J et al. eds. Uplift of Qinghai-Xizang (Tibet) Plateau and Global Change. Lanzhou: Lanzhou University Press. 19-83 |
[26] | Fang X M, Li J J, Zhu J J et al., 1997. Division and age dating of the Cenozoic strata of the Linxia Basin in Gansu, China. Chinese Sci Bull, 42: 1457-1471 |
[27] | Fischer von Waldheim G, 1814. Zoognosia tabulis synopticis illustrata. Vol. 3. Moscow: Nicolai Sergeidis Vsevolozsky. 1-730 |
[28] | Freudenthal M, 2004. Gliridae (Rodentia, Mammalia) from the Eocene and Oligocene of the Sierra Palomera (Teruel, Spain). Treb Mus Geol Barcelona, 12: 97-173 |
[29] | Gervais F L P, 1853. Description ostéologique de l’Anomalurus et remarques sur la classification naturelle des rogeurs. Ann Sci Nat Zool, Paris, Ser 3, 20: 238-246 |
[30] |
Gomes Rodrigues H, Marivaux L, Vianey-Liaud M, 2012. The Cricetidae (Rodentia, Mammalia) from the Ulantatal area (Inner Mongolia, China): new data concerning the evolution of Asian cricetids during the Oligocene. J Asian Earth Sci, 56: 160-179
DOI URL |
[31] | Gomes Rodrigues H, Marivaux L, Vianey-Liaud M, 2014. Rodent paleocommunities from the Oligocene of Ulantatal (Inner Mongolia, China). Palaeovertebrata, 38(1)-e3: 1-11 |
[32] | Gray J E, 1821. On the natural arrangement of vertebrose animals. London Med Reposit, 15(1): 296-310 |
[33] | Gregory W K, 1910. The orders of mammals. Bull Am Mus Nat Hist, 27: 1-524 |
[34] | Huang X S, 1985. Middle Oligocene ctenodactylids (Rodentia, Mammalia) of Ulantatal, Nei Mongol. Vert PalAsiat, 23(1): 27-38 |
[35] | Huang X S, 1992. Zapodidae (Rodentia, Mammalia) from the Middle Oligocene of Ulantatal, Nei Mongol. Vert PalAsiat, 30(4): 249-286 |
[36] | Kowalski K, 1974. Middle Oligocene rodents from Mongolia. Palaeont Pol, 30: 147-178 |
[37] | Li C K, 1965. Eocene leporids of North China. Vert PalAsiat, 9(1): 23-36 |
[38] | Li C K, Qiu Z D, 1980. Early Miocene mammalian fossils of Xining Basin, Qinghai. Vert PalAsiat, 18(3): 198-214 |
[39] | Li C K, Zhang Z Q, 2019. Order Lagomopha Brandt, 1855. In: Li C K, Zhang Z Q eds. Palaeovertebrata Sinica, Vol. III, Fasc. 4. Beijing: Science Press. 34-144 |
[40] | Li J J, Fang X M, Zhu J J et al., 1995. Paleomagnetic chronology and type sequence of the Cenozoic stratigraphy of the Linxia Basin in Gansu Province of China. In:Scientific Commission of the National Project on the Tibetan Plateau eds.eds. Study on the Formation and Evolution of the Qinghai-Xizhang Plateau, Environmental Change and Ecological System. Beijing: Sciences Press. 41-54 |
[41] |
Li Q, Gong Y X, Wang Y Q, 2017. New dipodid rodents from the Late Eocene of Erden Obo (Nei Mongol, China). Hist Biol, 29(5): 627-703
DOI URL |
[42] | Lindsay E H, 1978. Eucricetodon asiaticus (Matthew and Granger), an Oligocene rodent (Cricetidae) from Mongolia. J Paleont, 52(3): 590-595 |
[43] | Lopatin A V, 1999. New Early Miocene Zapodidae (Rodentia, Mammalia) from the Aral Formation of the Altynshokysu Locality (North Aral Region). Paleont J, 33(4): 429-438 |
[44] | Lopatin A V, 2000. New Early Miocene Aplodontidae and Eomyidae (Rodentia, Mammalia) from the Aral Formation of the Altynshokysu Locality (North Aral Region). Paleont J, 34(2): 198-202 |
[45] |
López-Antoñanzas R, Sen S, 2006. New Saudi Arabian Miocene jumping mouse (Zapodidae): systematics and phylogeny. J Vert Paleont, 26(1): 170-181
DOI URL |
[46] | Lu X Y, Ni X J, Li L Z et al., 2016. Two new mylagaulid rodents from the Early Miocene of China. Plos One, 11(8): 1-17, doi: 10.1371/journal.Pone.0159445 |
[47] | Lucas S G, Kordikova E G, Emry R J, 1998. Oligocene stratigraphy, sequence stratigraphy, and mammalian biochronology North of the Aral Sea, western Kazakstan. In: Beard K C, Dawson M R eds. Dawn of the Age of Mammals in Asia. Bull Carnegie Mus Nat Hist, 34: 313-348 |
[48] | Luo Z X, 1988. The Chinese Hare. Beijing: China Forestry Publishing House. 1-186 |
[49] |
Maridet O, Wu W Y, Ye J et al., 2009. Eucricetodon (Rodentia, Mammalia) from the Late Oligocene of the Junggar Basin, northern Xinjiang, China. Am Mus Novit, 3665: 1-21
DOI URL |
[50] | Matthew W D, 1903. Fauna of the Titanotherium Beds at Pipestone Springs, Montana. Bull Am Mus Nat Hist, 19(6): 197-226 |
[51] | Matthew W D, Granger W, 1923. Nine new rodents from the Oligocene of Mongolia. Am Mus Novit, 102: 1-10 |
[52] | Mein P, Freudenthal M, 1971. Une nouvelle classification des Cricetidae (Mammalia, Rodentia) du Tertiare de L’Europe. Scripta Geol, 2: 1-36 |
[53] |
Meng J, McKenna M C, 1998. Faunal turnovers of Palaeogene mammals from the Mongolian Plateau. Nature, 349: 364-367
DOI |
[54] | Meng J, Ye J, Wu W Y et al., 2006. A recommended boundary stratotype section for Xiejian Stage from northern Junggar Basin: implications to related bio-chronostratigraphy and environmental changes. Vert PalAsiat, 44(3): 205-236 |
[55] |
Prothero D R, Heaton T H, 1996. Faunal stability during the Early Oligocene climatic crash. Palaeogeogr, Palaeoclimat, Palaeoecol, 127: 257-283
DOI URL |
[56] | Qiu Z D, 1996. Middle Miocene Micromammalian Fauna from Tunggur, Nei Mongol. Beijing: Science Press. 1-216 |
[57] | Qiu Z D, Li Q, 2016. Neogene rodents from central Nei Mongol, China. Palaeont Sin, New Ser C, 30: 1-684 |
[58] | Qiu Z D, Tong Y S, 2015. Order Eulipotyphla Waddell, Okada et Hasegawa, 1999. In: Li C K, Qiu Z D eds. Palaeovertebrata Sinica, Vol. III, Fasc. 3. Beijing: Science Press. 1-140 |
[59] | Qiu Z D, Wang B Y, 2019. Family Dipodidae Fischer von Waldheim, 1817. In: Li C K, Qiu Z D eds. Palaeovertebrata Sinica, Vol. III, Fasc. 5(1). Beijing: Science Press. 242-326 |
[60] | Qiu Z X, Wang B Y, 2007. Paracerathere Fossils of China. Palaeont Sin, New Ser C, 29: 1-396 |
[61] | Qiu Z X, Xie J Y, Yan D F, 1990. Discovery of some Early Miocene mammalian fossils from Dongxiang, Gansu. Vert PalAsiat, 28(1): 9-24 |
[62] | Qiu Z X, Wang B Y, Deng T, 2004a. Indricotheres (Perissodactyla, Mammalia) from Oligocene in Linxia Basin, Gansu, China. Vert PalAsiat, 42(3): 177-192 |
[63] | Qiu Z X, Wang B Y, Deng T, 2004b. Mammal fossils from Yagou, Linxia Basin, Gansu, and related stratigraphic problems. Vert PalAsiat, 42(4): 276-296 |
[64] | Qiu Z X, Qiu Z D, Zheng Y et al., 2023. Historical review of stratigraphic study of Oligocene-Pliocene mammal-fossil bearing deposits in Linxia Basin, Gansu Province, and current controversies. Palaeogeogr, Palaeoclimat, Palaeoecol, 628.111773 |
[65] | Regional Geological Survey Team of Gansu Province =RGSTGP, 1965. Introduction to the 1:200,000 Geological Map of People’s Republic of China: I-48-II (Linxia). Beijing: Geological Publishing House. 1-42 |
[66] | Rensberger J M, 1980. A primitive promylagauline rodent from the Sharps Formation, South Dakota. J Paleont, 54(6): 1267-1277 |
[67] | Retallack G J, 1992. Paleosols and changes in climatic and vegetation across the Eocene/Oligocene boundary. In: Prothero D R, Berggren W A eds. Eocene-Oligocene Climatic and Biotic Evolution. Princeton, NJ: Princeton University Press. 382-398 |
[68] | Shevyreva N S, 1967. Hamsters of the genus Cricetodon from the Middle Oligocene of Central Kazakhstan. Paleont J, 1967(2): 78-85 |
[69] | Storch G, Dashzeveg D, 1997. Zaraalested russelli , a new tupaiodontine erinaceid (Mammalia, Lipotyphla) from the Middle Eocene of Mongolia. Geobios, 30(3): 437-445 |
[70] | Thaler L, 1966. Les rongeurs fossils du Bas-Languedoc dans leur rapport avec l’histoire des faunes et la stratigrap du tertiaire d’Europe. Mém Mus Hist Nat Ser C, 17: 1-295 |
[71] | Thomas O, 1897. On the genera of rodents: an attempt to bring up to date the current arrangement of the order. Proc Zool Soc London, 1012-1028 |
[72] | Tong Y S, Wang J W, 1993. A new soricomorph (Mammalia, Insectivora) from the Early Eocene of Wutu Basin, Shandong, China. Vert PalAsiat, 31(1): 19-32 |
[73] | Ünay E, 1989. Rodents from the Middle Oligocene of Turkish Thrace. Utrecht Micropaleontol Bull Spec Publ, 5: 1-119 |
[74] | Vianey-Liaud M, Schmidt-Kittler N, Marivaux L, 2006. The Ctenodactylidae (Rodentia) from the Oligocene of Ulantatal (Inner Mongolia, China). Palaeovertebrata, 34: 111-206 |
[75] |
Waddell P J, Okada N, Hasgawa M, 1999. Towards resolving the interordinal relationships of placental mammals. Syst Biol, 48: 1-5
PMID |
[76] | Wang B Y, 1985. Zapodidae (Rodentia, Mammalia) from the Lower Oligocene of Qujing, Yunnan, China. Mainzer Geowiss Mitt, 14: 345-367 |
[77] | Wang B Y, 1987a. Discovery of Aplodontidae (Rodentia, Mammalia) from Middle Oligocene of Nei Mongol, China. Vert PalAsiat, 25(1): 32-45 |
[78] | Wang B Y, 1987b. Discovery of cricetids (Rodentia, Mammalia) from Middle Oligocene of Nei Mongol, China. Vert PalAsiat, 25(3): 187-198 |
[79] | Wang B Y, 1997a. Chronological sequence and subdivision of Chinese Oligocene mammalian fauna. J Stratigr, 21(3): 183-191 |
[80] | Wang B Y, 1997b. The Mid-Tertiary Ctenodactylidae (Rodentia, Mammalia) of Eastern and Central Asia. Bull Am Mus Nat Hist, 234: 1-88 |
[81] |
Wang B Y, 2001a. On Tsaganomyidae (Rodentia, Mammalia) of Asia. Am Mus Novit, 3317: 1-50
DOI URL |
[82] | Wang B Y, 2001b. Eocene ctenodactyloids (Rodentia, Mammalia) from Nei Mongol, China. Vert PalAsiat, 39(2): 98-114 |
[83] | Wang B Y, 2003. Dipodidae (Rodentia, Mammalia) from the Mid-Tertiay deposits in Danghe Area, Gansu, China. Vert PalAsiat, 41(2): 89-103 |
[84] | Wang B Y, 2008a. Additional rodent material from Houldjin Formation of Erenhot, Nei Mongol, China. Vert PalAsiat, 46(1): 21-30 |
[85] | Wang B Y, 2008b. First record of Late Eocene insectivores and chiropteres from Nei Mongol, China. Vert PalAsiat, 46(4): 249-264 |
[86] | Wang B Y, 2019a. Family Ctenodactylidae Gervais, 1853. In: Li C K, Qiu Z D eds. Palaeovertebrata Sinica, Vol. III, Fasc. 5(1). Beijing: Science Press. 388-434 |
[87] | Wang B Y, 2019b. Family Gobiomyidae Wang, 2001. In: Li C K, Qiu Z D eds. Palaeovertebrata Sinica, Vol. III, Fasc. 5(1). Beijing: Science Press. 436-442 |
[88] | Wang B Y, 2019c. Family Tsaganomyidae Matthew et Granger, 1923. In: Li C K, Qiu Z D eds. Palaeovertebrata Sinica, Vol. III, Fasc. 5(1). Beijing: Science Press. 467-480 |
[89] | Wang B Y, Dashzeveg D, 2005. New Oligocene sciurids and aplodontids (Rodentia, Mammalia) from Mongolia. Vert PalAsiat, 43(2): 187-198 |
[90] | Wang B Y, Qiu Z D, 2019. Family Aplodontidae Brandt, 1855. In: Li C K, Qiu Z D eds. Palaeovertebrata Sinica, Vol. III, Fasc. 5(1). Beijing: Science Press. 43-61 |
[91] | Wang B Y, Qiu Z X, 2000a. Dipodidae (Rodentia Mammalia) from the Lower Member of Xianshuihe Formation in Lanzhou Basin, Gansu, China. Vert PalAsiat, 38(1): 10-35 |
[92] | Wang B Y, Qiu Z X, 2000b. Micromammal fossils from red mudstone of Lower Member of Xianshuihe Formation in Lanzhou Basin, Gansu, China. Vert PalAsiat, 38(4): 255-273 |
[93] | Wang B Y, Chang J, Meng X J et al., 1981. Stratigraphy of the Upper and Middle Oligocene of Qianlishan District, Nei Mongol (Inner Mongolia). Vert PalAsiat, 19(1): 26-34 |
[94] | Wang B Y, Wu W Y, Qiu Z D, 2020. Family Cricetidae Fischer von Waldheim, 1817. In: Qiu Z D, Li C K, Zheng S H eds. Palaeovertebrata Sinica, Vol. III, Fasc. 5(2). Beijing: Science Press. 10-152 |
[95] | Wang B Y, Qiu Z X, Wang S Q, 2023. Mansancun micromammal fauna from the upper part of the Jiaozigou Formation in Linxia Basin, Gansu Province. Vert PalAsiat, 61(2): 123-141 |
[96] | Wasiljeff J, Zhang Z Q, 2022. Stratigraphical significance of Ulantatal sequence (Nei Mongol, China) in refining the latest Eocene and Oligocene terrestrial regional stages. Vert PalAsiat, 60(1): 42-53 |
[97] | Wasiljeff J, Kaakinen A, Salminen J M et al., 2020. Magnetostratigraphic constrains on the fossiliferous Ulantatal sequence in Inner Mongolia, China: implications for Asian aridification and faunal turnover before the Eocene-Oligocene boundary. Earth Planet Sci Lett, 535: 116125, doi: 10.1016/j.epsl.2020.116125 |
[98] | Wolfe J A, 1978. A paleobotanical interpretation of Tertiary climates in the Northern Hemisphere. Am Sci, 66(6): 694-703 |
[99] | Wu W Y, 2019a. Family Mylagaulidae Cope, 1881. In: Li C K, Qiu Z D eds. Palaeovertebrata Sinica, Vol. III, Fasc. 5(1). Beijing: Science Press. 61-70 |
[100] | Wu W Y, 2019b. Family Eomyidae Winge, 1887. In: Li C K, Qiu Z D eds. Palaeovertebrata Sinica, Vol. III, Fasc. 5(1). Beijing: Science Press. 211-240 |
[101] |
Zhang Z Q, Liu Y, Wang L H et al., 2016. Lithostratigraphic context of Oligocene Mammalian faunas from Ulantatal, Nei Mongol, China. C R Palevol, 15(7): 903-910
DOI URL |
[102] |
Zheng Y, Qiu Z X, Qiu Z D et al., 2023. Revised magnetostratigraphy of the Linxia Basin in the northeast Tibetan Plateau, constrained by micromammalian fossils. Palaeogeogr, Palaeoclimat, Palaeoecol, 623: 111620
DOI URL |
[103] | Ziegler R, Dahlmann T, Storch G, 2007. 4. Marsupialia, Erinaceomorpha and Soricomorpha (Mammala). Daxner-Höck G ed. Oligocene-Miocene Vertebrates from the Valley of Lakes (Central Mongolia): Morphology, Phylogenetic and Stratigraphic Implications. Ann Naturhist Mus Wien, 108A: 53-164 |
[1] | 王伴月, 邱占祥, 王世骐. 甘肃临夏盆地椒子沟组上部满散村小哺乳动物群. 古脊椎动物学报, 2023, 61(2): 123-141. |
[2] | 李永项,胡松梅,王社江,张云翔. 陕西洛南龙牙洞小哺乳动物化石新材料. 古脊椎动物学报, 2016, 54(4): 332-350. |
[3] | 吴文裕,孟 津,叶 捷,倪喜军,毕顺东. 新疆准噶尔盆地北缘晚渐新世睡鼠再研究. 古脊椎动物学报, 2016, 54(1): 36-50. |
[4] | 白 滨,王 旭. 小哺乳动物化石牙齿釉质碳、氧同位素测试方法简介及应用前景. 古脊椎动物学报, 2013, 51(3): 242-251. |
[5] | 孟 津 叶 捷 吴文裕 岳乐平 倪喜军. 准噶尔盆地北缘谢家阶底界—推荐界线层型及其生物—年代地层和环境演变意义. 古脊椎动物学报, 2006, 44(03): 205-236. |
[6] | 叶 捷, 孟 津, 吴文裕. Paraceratherium 在新疆准噶尔盆地北缘的发现及其意义. 古脊椎动物学报, 2003, 41(03): 220-229. |
[7] | 王伴月. 始鼠化石在甘肃省党河地区上渐新统的发现. 古脊椎动物学报, 2002, 40(02): 139-145. |
[8] | 孟津, 吴文裕, 叶捷, 毕顺东. 新疆准噶尔盆地北缘铁尔斯哈巴合晚渐新世两种啮形类耳区的形态研究. 古脊椎动物学报, 2001, 39(01): 43-53. |
[9] | 吴文裕, 叶捷,毕顺东, 孟津. 新疆准噶尔盆地北缘晚渐新世睡鼠化石的发现. 古脊椎动物学报, 2000, 38(01): 36-42. |
[10] | 王伴月, 邱占祥. 甘肃兰州盆地咸水河组下段红色泥岩中的跳鼠化石. 古脊椎动物学报, 2000, 38(01): 10-35. |
[11] | 加藤高文, 大塚裕之. 日本西部渐新世一中新世啮齿类及其地质古生物学意义. 古脊椎动物学报, 1995, 33(04): 315-329. |
[12] | 赵仲如. 广西石炭兽科新材料. 古脊椎动物学报, 1993, 31(03): 183-190. |
[13] | 王伴月. 内蒙古上渐新统中Yindirtemys (啮齿目,梳趾鼠科)的发现. 古脊椎动物学报, 1991, 29(04): 296-. |
[14] | 童永生. 中华鼠兔一新种(兔形目,鼠兔科). 古脊椎动物学报, 1989, 27(02): 1-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||