古脊椎动物学报 ›› 2025, Vol. 63 ›› Issue (1): 20-42.DOI: 10.19615/j.cnki.2096-9899.241225CSTR: 32090.14.j.cnki.2096-9899.241225
王敏1, 王孝理2,3, 郑晓廷2,3, 周忠和1
收稿日期:
2024-10-29
出版日期:
2025-01-20
发布日期:
2025-01-26
通讯作者:
WANG Min, wangmin@ivpp.ac.cn基金资助:
WANG Min1, WANG Xiao-Li2,3, ZHENG Xiao-Ting2,3, ZHOU Zhong-He1
Received:
2024-10-29
Published:
2025-01-20
Online:
2025-01-26
Contact:
WANG Min, wangmin@ivpp.ac.cn摘要:
无论从何种维度,恐龙—鸟类的演化都是地球生命历史中最吸引人的一次演化事件,其中涉及大量形态学和生态学特征的改变。相较于头后骨骼形态,现有的研究对鸟类头骨的早期演化所取得的认识相对有限,这主要受限于保存较好的早期鸟翼类头骨化石材料的稀少。近鸟龙是目前已知最早的副鸟类(距今约1.6亿年)——副鸟类是指包含所有现代鸟类,但不包括尾羽龙类或者耀龙类的最广义类群。已知的近鸟龙类化石多达百余件,使得该类群成为研究非鸟兽脚类恐龙—鸟类演化过程中形态变化的最理想对象。然而目前有关近鸟龙类的头骨形态特征存在大量未知的内容。基于一件保存较好的近鸟龙类化石,详细描述了该类群头骨的形态结构,包括此前知之甚少的区域(例如颞区和颚区)。研究显示出近鸟龙保留了非鸟恐龙所具有的原始的双弓型非可动性的头骨形态。同时,近鸟龙头骨还呈现出与驰龙类、伤齿龙类,以及原始鸟翼类分别相似的局部形态特征,揭示了模块化演化深刻影响鸟翼类头骨的早期演化。
中图分类号:
王敏, 王孝理, 郑晓廷, 周忠和. 赫氏近鸟龙(兽脚类恐龙:副鸟类)头骨形态对鸟类头骨演化的新启示. 古脊椎动物学报, 2025, 63(1): 20-42.
WANG Min, WANG Xiao-Li, ZHENG Xiao-Ting, ZHOU Zhong-He. Cranial anatomy of Anchiornis huxleyi (Theropoda: Paraves) sheds new light on bird skull evolution. Vertebrata Palasiatica, 2025, 63(1): 20-42.
Fig. 3 Digital reconstitution of the skull of Anchiornis huxleyi (STM 0-47) from Jianchang, Liaoning in right (A) and left (B) lateral views showing cranial anatomy Abbreviations: hy. hyoid; lan. left angular; lde. left dentary; lec. left ectopterygoid; lfr. left frontal; lju. left jugal; llc. left lacrimal; lma. left maxilla; lna. left nasal; lpa. left palatine; lpm. left premaxilla; lpo. left postorbital; lqj. left quadratojugal; lqu. left quadrate; ls. left squamosal; lsp. left splenial; lsu. left surangular; pa. prearticular; par. parietal; pr. parasphenoid rostrum; ran. right angular; rde. right dentary; rec. right ectopterygoid; rfr. right frontal; rlc. right lacrimal; rma. right maxilla; rna. right nasal; rpa. right palatine; rpm. right premaxilla; rpo. right postorbital; rqj. right quadratojugal; rqu. right quadrate; rsu. right surangular; vo. vomer. Scale bars = 10 mm
Fig. 4 Anatomy of facial elements of Anchiornis huxleyi (STM 0-47) from Jianchang, Liaoning Digital reconstruction of the left premaxilla (A), right maxilla (B), left lacrimal (C, D), and left nasal (E, F) A-C, E. lateral views; D, F. medial views. The blue arrowhead indicates the recess at the juncture of the anterior and ventral processes, and the orange arrowhead denotes the lateral fossa on the ventral process Abbreviations: afl. articular facet for lacrimal; apl. anterior process of lacrimal; ib. interfenestral bar; jm. jugal process of maxilla; mf. maxillary fenestra; mp. maxillary process; np. nasal process; pf. promaxillary fenestra; pm. premaxillary process; pn. premaxillary process of nasal; pp. promaxillary pila; ppl. posterior process of lacrimal; vn. ventral process of nasal; vpl. ventral process of lacrimal. Scale bars = 5 mm
Fig. 5 Anatomy of the temporal elements of Anchiornis huxleyi (STM 0-47) from Jianchang, Liaoning Digital reconstruction of the left postorbital (A), left squamosal (B, C), and right jugal and quadratojugal (D, E) A, B, E. lateral views; C, D. medial views Abbreviations: afp. articular facet for postorbital; afq. articular facet for quadrate; fpp. frontal process of postorbital; jpp. jugal process of postorbital; jpq. jugal process of quadratojugal; mpj. maxillary process of jugal; pas. parietal process of squamosal; ppj. postorbital process of jugal; pps. postorbital process of squamosal; qps. quadratojugal process of squamosal; spp. squamosal process of postorbital; spq. squamosal process of quadratojugal. Scale bars = 5 mm
Fig. 6 Anatomy of the quadrate of Anchiornis huxleyi (STM 0-47) from Jianchang, Liaoning A-D. right quadrate in lateral (A), medial (B), posterior (C), and ventral (D) views; E, F. left quadrate in lateral (E) and medial (F) views Abbreviations: afq. articular facet for quadratojugal; lc. lateral condyle; mc. medial condyle; mp. mandibular process; orp. orbital process; otp. otic process; qr. quadrate ridge. Scale bars = 5 mm
Fig. 7 Anatomy of the palatal elements of Anchiornis huxleyi (STM 0-47) from Jianchang, Liaoning A, B. right pterygoid in medial (A) and lateral (B) views; C, D. left palatine in dorsal (C) and ventral (D) views; E, F. right ectopterygoid in dorsal (E) and ventral (F) views; G. parasphenoid rostrum in ventrolateral view; H. possible right vomer in dorsal view The blue arrowheads in (C) denote the dorsal depressions, and the green arrowhead in (G) denotes the concave ventral surface of the parasphenoid rostrum Abbreviations: afp. articular facet for basipterygoid process; chp. choanal process; jue. jugal process of ectopterygoid; jup. jugal process; mxp. maxillary process; pfe. pterygoid flange of ectopterygoid; plr. palatine ramus; pte. pterygoid process of ectopterygoid; ptp. pterygoid process of palatine; qur. quadrate ramus. Scale bars = 5 mm
Fig. 8 Anatomy of the lower jaw elements of Anchiornis huxleyi (STM 0-47) from Jianchang, Liaoning A, B. left dentary in medial (A) and lateral (B) views; C. left splenial in medial view; D, E. left post-dentary elements in medial (D) and lateral (E) views; F. right post-dentary elements in lateral view Abbreviations: ang. angular; emf. external mandibular foramen; saf. surangular foramen; san. Surangular Scale bars = 5 mm
[1] | Agnolin F L, Novas F E, 2013. Avian Ancestors: A Review of the Phylogenetic Relationships of the Theropods Unenlagiidae, Microraptoria, Anchiornis and Scansoriopterygidae. Berlin: Springer-Verlag. 1-96 |
[2] | Barsbold R, Osmólska H, 1999. The skull of Velociraptor (Theropoda) from the late Cretaceous of Mongolia. Acta Palaeontol Pol, 44: 189-219 |
[3] | Baumel J J, Witmer L M, 1993. Osteologia. In: Baumel J J, King A S, Breazile J E et al. eds. Handbook of Avian Anatomy: Nomina Anatomica Avium, 2nd ed. Cambridge: Nuttall Ornithological Club. 45-132 |
[4] |
Brusatte S L, Lloyd G T, Wang S C et al., 2014. Gradual assembly of avian body plan culminated in rapid rates of evolution across the dinosaur-bird transition. Curr Biol, 24: 2386-2392
DOI PMID |
[5] | Brusatte S L, O’Connor J K, Jarvis E D, 2015. The origin and diversification of birds. Curr Biol, 25: R888-R898 |
[6] |
Clarke J A, Middleton K M, 2008. Mosaicism, modules, and the evolution of birds: results from a Bayesian approach to the study of morphological evolution using discrete character data. Syst Biol, 57: 185-201
DOI PMID |
[7] | Currie P J, 1987. Bird-like characteristics of the jaws and teeth of troodontid theropods (Dinosauria, Saurischia). J Vert Paleont, 7: 72-81 |
[8] | Currie P J, 1995. New information on the anatomy and relationships of Dromaeosaurus albertensis (Dinosauria: Theropoda). J Vert Paleont, 576-591 |
[9] | Currie P J, Zhao X, 1993. A new carnosaur (Dinosauria, Theropoda) from the Jurassic of Xinjiang, People’s Republic of China. Can J Earth Sci, 30: 2037-2081 |
[10] | Eddy D R, Clarke J A, 2011. New information on the cranial anatomy of Acrocanthosaurus atokensis and its implications for the phylogeny of Allosauroidea (Dinosauria: Theropoda). PLoS One, 6: e17932 |
[11] | Elżanowski A, Stidham T A, 2011. A galloanserine quadrate from the Late Cretaceous Lance Formation of Wyoming. Auk, 128: 138-145 |
[12] | Elżanowski A, Wellnhofer P, 1996. Cranial morphology of Archaeopteryx: evidence from the seventh skeleton. J Vert Paleont, 16: 81-94 |
[13] | Field D J, Hanson M, Burnham D et al., 2018. Complete Ichthyornis skull illuminates mosaic assembly of the avian head. Nature, 557: 96-100 |
[14] | Godefroit P, Cau A, Hu D Y et al., 2013. A Jurassic avialan dinosaur from China resolves the early phylogenetic history of birds. Nature, 498: 359-362 |
[15] |
Goloboff P A, Catalano S A, 2016. TNT version 1.5, including a full implementation of phylogenetic morphometrics. Cladistics, 32: 221-238
DOI PMID |
[16] | Hendrickx C, Araújo R, Mateus O, 2015. The non-avian theropod quadrate I: standardized terminology with an overview of the anatomy and function. PeerJ, 3: e1245 |
[17] | Holliday C M, Witmer L M, 2008. Cranial kinesis in dinosaurs: intracranial joints, protractor muscles, and their significance for cranial evolution and function in diapsids. J Vert Paleont, 28: 1073-1088 |
[18] | Hu D Y, Hou L H, Zhang L J et al., 2009. A pre-Archaeopteryx troodontid theropod from China with long feathers on the metatarsus. Nature, 461: 640-643 |
[19] | Hu H, Sansalone G, Wroe S et al., 2019. Evolution of the vomer and its implications for cranial kinesis in Paraves. Proc Nat Acad Sci USA, 116: 19571-19578 |
[20] | Hu H, Wang Y, Fabbri M et al., 2022. Cranial osteology and palaeobiology of the Early Cretaceous bird Jeholornis prima (Aves: Jeholornithiformes). Zool J Linn Soc, 198: 93-112 |
[21] | Kundrát M, Nudds J, Kear B P et al., 2019. The first specimen of Archaeopteryx from the Upper Jurassic Mörnsheim Formation of Germany. Hist Biol, 31: 3-63 |
[22] |
Li Z H, Wang M, Stidham T A et al., 2023. Decoupling the skull and skeleton in a Cretaceous bird with unique appendicular morphologies. Nat Ecol Evol, 7: 20-31
DOI PMID |
[23] | Madsen J H, 1976. Allosaurus fragilis: a revised osteology. Utah Geol Min Surv Bull, 109: 1-163 |
[24] | Makovicky P J, Norell M A, 2004. Troodontidae. In: David B W, Peter D, Halszka O eds. The Dinosauria, 2nd ed. Berkeley: University of California Press. 184-195 |
[25] | Makovicky P J, Norell M A, Clark J M et al., 2003. Osteology and relationships of Byronosaurus jaffei (Theropoda: Troodontidae). Am Mus Novit, 2003: 1-32 |
[26] | Mayr G, Pohl B, Peters D S, 2005. A well-preserved Archaeopteryx specimen with theropod features. Science, 310: 1483-1486 |
[27] | Norell M A, Makovicky P J, 2004. Dromaosauridae. In: David B W, Peter D, Halszka O eds. The Dinosauria, 2nd ed. Berkeley: University of California Press. 196-209 |
[28] | Norell M A, Clark J M, Turner A H et al., 2006. A new dromaeosaurid theropod from Ukhaa Tolgod (Ömnögov, Mongolia). Am Mus Novit, 3545: 1-51 |
[29] | Norell M A, Makovicky P J, Bever G S et al., 2009. A review of the Mongolian Cretaceous dinosaur saurornithoides (Troodontidae: Theropoda). Am Mus Novit, 3654: 1-63 |
[30] | O’Connor J K, Chiappe L M, 2011. A revision of enantiornithine (Aves: Ornithothoraces) skull morphology. J Syst Palaeontol, 9: 135-157 |
[31] | Ostrom J H, 1969. Osteology of Deinonychus antirrhopus, an unusual theropod from the Lower Cretaceous of Montana. Bull Peabody Mus Nat Hist, 30: 1-165 |
[32] | Pei R, Li Q, Meng Q et al., 2017a. New specimens of Anchiornis huxleyi (Theropoda: Paraves) from the Late Jurassic of northeastern China. Bull Am Mus Nat Hist, 411: 1-67 |
[33] | Pei R, Norell M A, Barta D E et al., 2017b. Osteology of a new Late Cretaceous troodontid specimen from Ukhaa Tolgod, Ömnögovi Aimag, Mongolia. Am Mus Novit, 3889: 1-47 |
[34] | Rauhut O W M, Foth C, 2020. The origin of birds: current consensus, controversy, and the occurrence of feathers. In: Foth C, Rauhut O W M eds. The Evolution of Feathers: From Their Origin to the Present. Cham: Springer International Publishing. 27-45 |
[35] | Rauhut O W M, Foth C, Tischlinger H, 2018. The oldest Archaeopteryx (Theropoda: Avialiae): a new specimen from the Kimmeridgian/Tithonian boundary of Schamhaupten, Bavaria. PeerJ, 6: e4191 |
[36] |
Stidham T A, O’Connor J K, 2021. The evolutionary and functional implications of the unusual quadrate of Longipteryx chaoyangensis (Avialae: Enantiornithes) from the Cretaceous Jehol Biota of China. J Anat, 239: 1066-1074
DOI PMID |
[37] | Sullivan C, Xu X, 2017. Morphological diversity and evolution of the jugal in dinosaurs. Anat Rec, 300: 30-48 |
[38] | Torres C R, Norell M A, Clarke J A, 2021. Bird neurocranial and body mass evolution across the end-Cretaceous mass extinction: the avian brain shape left other dinosaurs behind. Sci Adv, 7: eabg7099 |
[39] |
Tsuihiji T, Barsbold R, Watabe M et al., 2014. An exquisitely preserved troodontid theropod with new information on the palatal structure from the Upper Cretaceous of Mongolia. Naturwissenschaften, 101: 131-142
DOI PMID |
[40] | Turner A H, Makovicky P J, Norell M A, 2012. A review of dromaeosaurid systematics and paravian phylogeny. Bull Am Mus Nat Hist, 371: 1-206 |
[41] | Turner A H, Montanari S, Norell M A, 2021. A new dromaeosaurid from the Late Cretaceous Khulsan locality of Mongolia. Am Mus Novit, 3965: 1-48 |
[42] | Wang M, 2023. A new specimen of Parabohaiornis martini (Avialae: Enantiornithes) sheds light on early avian skull evolution. Vert PalAsiat, 61: 96-107 |
[43] | Wang M, Hu H, 2017. A comparative morphological study of the jugal and quadratojugal in early birds and their dinosaurian relatives. Anat Rec, 300: 62-75 |
[44] | Wang M, Zhou Z H, 2017. The evolution of birds with implications from new fossil evidences. In: Maina N J ed. The Biology of the Avian Respiratory System. Heidelberg: Springer International Publishing. 1-26 |
[45] | Wang M, O’Connor J K, Zhou Z H, 2019. A taxonomical revision of the Confuciusornithiformes (Aves: Pygostylia). Vert PalAsiat, 57: 1-37 |
[46] |
Wang M, Stidham T A, Li Z H et al., 2021. Cretaceous bird with dinosaur skull sheds light on avian cranial evolution. Nat Commun, 12: 3890
DOI PMID |
[47] | Wang M, Stidham T A, O’Connor J K et al., 2022. Insight into the evolutionary assemblage of cranial kinesis from a Cretaceous bird. eLife, 11: e81337 |
[48] | Weishampel B D, Dodson P, Osmólska H, 2004. The Dinosauria, 2nd ed. Berkeley: University of California Press. 1-880 |
[49] | Xu L, Wang M, Chen R et al., 2023. A new avialan theropod from an emerging Jurassic terrestrial fauna. Nature, 621: 336-343 |
[50] | Xu X, Wu X, 2001. Cranial morphology of Sinornithosaurus millenii Xu et al. 1999 (Dinosauria: Theropoda: Dromaeosauridae) from the Yixian Formation of Liaoning, China. Can J Earth Sci, 38: 1739-1752 |
[51] | Xu X, Norell M A, Wang X et al., 2002. A basal troodontid from the Early Cretaceous of China. Nature, 415: 780-784 |
[52] | Xu X, Zhao Q, Norell M et al., 2009. A new feathered maniraptoran dinosaur fossil that fills a morphological gap in avian origin. Chinese Sci Bull, 54: 430-435 |
[53] | Xu X, You H L, Du K et al., 2011. An Archaeopteryx-like theropod from China and the origin of Avialae. Nature, 475: 465-470 |
[54] | Xu X, Zhou Z H, Dudley R et al., 2014. An integrative approach to understanding bird origins. Science, 346: 1253293 |
[55] | Xu X, Pittman M, Sullivan C et al., 2015. The taxonomic status of the Late Cretaceous dromaeosaurid Linheraptor exquisitus and its implications for dromaeosaurid systematics. Vert PalAsiat, 53: 29-62 |
[56] |
Xu X, Currie P, Pittman M et al., 2017. Mosaic evolution in an asymmetrically feathered troodontid dinosaur with transitional features. Nat Commun, 8: 14972
DOI PMID |
[57] | Yin Y, Pei R, Zhou C, 2018. Cranial morphology of Sinovenator changii (Theropoda: Troodontidae) on the new material from the Yixian Formation of western Liaoning, China. PeerJ, 6: e4977 |
[58] |
Zheng X T, Wang X L, Sullivan C et al., 2018. Exceptional dinosaur fossils reveal early origin of avian-style digestion. Sci Rep, 8: 14217
DOI PMID |
[59] | Zhou Y C, Sullivan C, Zhang F C, 2019. Negligible effect of tooth reduction on body mass in Mesozoic birds. Vert PalAsiat, 57: 38-50 |
[60] | Zhou Z H, 2004. The origin and early evolution of birds: discoveries, disputes, and perspectives from fossil evidence. Naturwissenschaften, 91: 455-471 |
[61] | Zhou Z H, Wang Y, 2017. Vertebrate assemblages of the Jurassic Yanliao Biota and the Early Cretaceous Jehol Biota: comparisons and implications. Palaeoworld, 26: 241-252 |
[62] | Zusi R L, Livezey B C, 2006. Variation in the os palatinum and its structural relation to the palatum osseum of birds (Aves). Ann Carnegie Mus, 75: 137-180 |
[1] | 王敏. 马氏副渤海鸟(鸟翼类:反鸟类)新标本对鸟类头骨早期演化的意义. 古脊椎动物学报, 2023, 61(2): 90-107. |
[2] | 徐冉成, 李茜. 内蒙古乌兰塔塔尔地区早渐新世梳趾鼠类头骨新材料. 古脊椎动物学报, 2020, 58(4): 305-327. |
[3] | 邓 涛,张云翔,曾志杰,侯素宽. 记恐剑齿虎一头骨及剑齿虎镶嵌进化中体型巨大化的新证据. 古脊椎动物学报, 2016, 54(4): 302-318. |
[4] | 李萍,王元青. 内蒙古中部新发现的Schlosseria magister头骨材料. 古脊椎动物学报, 2010, 48(2): 119-132. |
[5] | 伍少远. Alloptox gobiensis (兔形目,鼠兔科) 头骨形态及系统位置. 古脊椎动物学报, 2003, 41(02): 115-130. |
[6] | 张法奎, 杜湘珂, 朱奇志, 程希侃. 完美中国颌兽(Sinognathus gracilis)头骨化石标本的新观察. 古脊椎动物学报, 1999, 37(04): 267-277. |
[7] | 叶捷, 邱占祥, 陈景智. 记同心铲齿象一幼年头骨化石. 古脊椎动物学报, 1989, 27(04): 1-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||