古脊椎动物学报 ›› 2023, Vol. 61 ›› Issue (1): 43-70.DOI: 10.19615/j.cnki.2096-9899.221123CSTR: 32090.14.j.cnki.2096-9899.221123
收稿日期:
2022-09-15
出版日期:
2023-01-20
发布日期:
2023-01-11
基金资助:
Received:
2022-09-15
Published:
2023-01-20
Online:
2023-01-11
Contact:
* liqian@ivpp.ac.cn摘要:
内蒙古二连盆地乌拉乌苏地区是亚洲哺乳动物分期中沙拉木伦期哺乳动物群的发现地和经典产地。在以往的研究中鲜少有关于这一地区啮齿类化石的报道。近来,在该地区沙拉木伦组下部地层中发现大量的啮齿类化石,经详细的形态学研究,它们被归入1超科4科7属9种,包括梳趾鼠超科的Yuomys cavioides, Gobiomys neimongolensis, G. exiguus以及G. asiaticus; 跳鼠科Allosminthus uniconjugatus和Primisminthus shanghenus; 仓鼠科Pappocricetodon rencunensis; 壮鼠科Hulgana cf. H. ertnia和圆柱齿鼠科Proardynomys ulausuensis。乌拉乌苏沙拉木伦组下部与额尔登敖包“下红层”的啮齿类组合具有高度相似性,两者共同构成了二连盆地沙拉木伦期啮齿类动物群。综合二连盆地乌拉乌苏地点沙拉木伦组下部以及额尔登敖包剖面“下红层”的啮齿类化石,运用最小个体数的方法对二连盆地沙拉木伦期啮齿类动物群的组分和特征进行了分析,结果显示梳趾鼠类最具优势,跳鼠类和仓鼠类次之。通过物种多样性分析,二连盆地古近纪啮齿类动物群呈现出早中始新世以梳趾鼠类为主导类群到晚始新世以仓鼠、跳鼠类为主导类群的转变。内蒙古二连盆地和山西垣曲盆地沙拉木伦期啮齿类动物群的特征存在差异,很可能是由两个动物群所处不同的区域环境所造成的。
中图分类号:
李琪, 李茜. 内蒙古二连盆地沙拉木伦期啮齿类动物群研究. 古脊椎动物学报, 2023, 61(1): 43-70.
LI Qi, LI Qian. The Sharamurunian rodent fauna in the Erlian Basin, Nei Mongol, China. Vertebrata Palasiatica, 2023, 61(1): 43-70.
Fig. 1 Stratigraphy section of Ula Usu A. the Paleogene outcrop at Ula Usu; B. stratigraphic section of the studied sediment series at Ula Usu The area circled by the red dotted line in the A-graph is the strata where new rodent fossils were collected, which was produced in between 30 and 10 m of the stratigraphic column in the B-graph
P. ulausuensis sp. nov. | Proardynomys sp. | P. borkhoii | |||||
---|---|---|---|---|---|---|---|
Li, | Dashzeveg and Meng, | ||||||
V28608 | V26554.1-5 | PSS 41-30 | PSS 41-29 | ||||
p4 | L | 3.75 | 4.10 | ||||
W | 3.40 | 3.00 | |||||
m1 | L | 3.05 | 3.20-3.30 | 3.82 | 3.54 | ||
W | 3.10 | 3.20-3.50 | 3.44 | 3.00 | |||
m2 | L | 3.50 | 3.20-3.50 | 4.10 | 3.70 | ||
W | 3.25 | 3.50 | 3.46 | 3.14 | |||
m3 | L | 4.00 | 4.60 | 4.36 | |||
W | 3.35 | 3.50 | 3.45 |
Table 1 Measurements of lower cheek teeth of Proardynomys (mm)
P. ulausuensis sp. nov. | Proardynomys sp. | P. borkhoii | |||||
---|---|---|---|---|---|---|---|
Li, | Dashzeveg and Meng, | ||||||
V28608 | V26554.1-5 | PSS 41-30 | PSS 41-29 | ||||
p4 | L | 3.75 | 4.10 | ||||
W | 3.40 | 3.00 | |||||
m1 | L | 3.05 | 3.20-3.30 | 3.82 | 3.54 | ||
W | 3.10 | 3.20-3.50 | 3.44 | 3.00 | |||
m2 | L | 3.50 | 3.20-3.50 | 4.10 | 3.70 | ||
W | 3.25 | 3.50 | 3.46 | 3.14 | |||
m3 | L | 4.00 | 4.60 | 4.36 | |||
W | 3.35 | 3.50 | 3.45 |
n | L | Mean | W | Mean | |
---|---|---|---|---|---|
P4 | 2 | 3.40-3.60 | 3.50 | 3.95 | 3.95 |
M1 | 7 | 3.20-3.65 | 3.39 | 3.10-4.60 | 3.76 |
M2 | 9 | 3.20-3.75 | 3.46 | 3.70-4.40 | 4.00 |
M3 | 1 | 3.10 | 3.10 | 3.80 | 3.80 |
m1 | 3 | 3.60-3.90 | 3.73 | 3.10-3.40 | 3.23 |
m2 | 4 | 3.60-4.00 | 3.90 | 3.70-3.90 | 3.76 |
m3 | 2 | 4.90-5.00 | 4.95 | 3.90-4.30 | 4.10 |
Table 2 Measurements of teeth of Yuomys cavioides from Ula Usu (mm)
n | L | Mean | W | Mean | |
---|---|---|---|---|---|
P4 | 2 | 3.40-3.60 | 3.50 | 3.95 | 3.95 |
M1 | 7 | 3.20-3.65 | 3.39 | 3.10-4.60 | 3.76 |
M2 | 9 | 3.20-3.75 | 3.46 | 3.70-4.40 | 4.00 |
M3 | 1 | 3.10 | 3.10 | 3.80 | 3.80 |
m1 | 3 | 3.60-3.90 | 3.73 | 3.10-3.40 | 3.23 |
m2 | 4 | 3.60-4.00 | 3.90 | 3.70-3.90 | 3.76 |
m3 | 2 | 4.90-5.00 | 4.95 | 3.90-4.30 | 4.10 |
Fig. 3 Cheek teeth of Yuomys cavioides from Ula Usu, Erlian Basin A. IVPP V28604.2, left maxilla with P3-M3; B. V28604.16, left m1; C. V28604.6, left mandible with m2-3
V28605.1-33 | V23903.1-44 | V12518.1-34 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Li, | Wang, | |||||||||||
n | Range | Mean | n | Range | Mean | n | Range | Mean | ||||
M1 | L | 1 | 1.50 | 1.50 | 13 | 1.60-1.95 | 1.73 | 7 | 1.53-1.94 | 1.82 | ||
W | 2 | 1.63-1.77 | 1.70 | 13 | 1.70-2.05 | 1.82 | 7 | 1.70-2.18 | 1.95 | |||
M2 | L | 5 | 1.22-1.60 | 1.49 | 8 | 1.75-2.05 | 1.89 | 10 | 1.85-2.30 | 2.06 | ||
W | 5 | 1.33-1.73 | 1.55 | 8 | 1.95-2.15 | 2.06 | 9 | 2.00-2.46 | 2.17 | |||
M3 | L | 2 | 1.40-1.60 | 1.50 | 8 | 1.85-2.10 | 2.00 | 5 | 2.05-2.28 | 2.19 | ||
W | 2 | 1.45-1.50 | 1.48 | 8 | 1.95-2.25 | 2.01 | 5 | 1.90-2.20 | 2.08 | |||
P4 | L | 2 | 1.13-1.20 | 1.17 | 1 | 1.30 | 1.30 | 2 | 1.13-1.17 | 1.15 | ||
W | 2 | 0.93-1.00 | 0.97 | 1 | 1.20 | 1.20 | 2 | 1.00 | 1.00 | |||
m1 | L | 7 | 1.22-1.40 | 1.30 | 7 | 1.50-1.75 | 1.65 | 7 | 1.50-1.90 | 1.74 | ||
W | 7 | 1.00-1.20 | 1.11 | 7 | 1.34-1.45 | 1.40 | 7 | 1.30-1.63 | 1.47 | |||
m2 | L | 4 | 1.53-1.87 | 1.71 | 7 | 1.80-2.00 | 1.91 | 12 | 1.80-2.45 | 2.04 | ||
W | 4 | 1.30-1.62 | 1.52 | 7 | 1.65-1.75 | 1.72 | 14 | 1.53-2.10 | 1.81 | |||
m3 | L | 11 | 1.42-1.83 | 1.54 | 11 | 1.80-2.35 | 2.12 | 5 | 1.91-2.20 | 2.11 | ||
W | 9 | 1.07-1.45 | 1.23 | 11 | 1.55-1.90 | 1.71 | 5 | 1.42-1.83 | 1.62 |
Table 3 Measurements of cheek teeth of Gobiomys neimongolensis (mm)
V28605.1-33 | V23903.1-44 | V12518.1-34 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Li, | Wang, | |||||||||||
n | Range | Mean | n | Range | Mean | n | Range | Mean | ||||
M1 | L | 1 | 1.50 | 1.50 | 13 | 1.60-1.95 | 1.73 | 7 | 1.53-1.94 | 1.82 | ||
W | 2 | 1.63-1.77 | 1.70 | 13 | 1.70-2.05 | 1.82 | 7 | 1.70-2.18 | 1.95 | |||
M2 | L | 5 | 1.22-1.60 | 1.49 | 8 | 1.75-2.05 | 1.89 | 10 | 1.85-2.30 | 2.06 | ||
W | 5 | 1.33-1.73 | 1.55 | 8 | 1.95-2.15 | 2.06 | 9 | 2.00-2.46 | 2.17 | |||
M3 | L | 2 | 1.40-1.60 | 1.50 | 8 | 1.85-2.10 | 2.00 | 5 | 2.05-2.28 | 2.19 | ||
W | 2 | 1.45-1.50 | 1.48 | 8 | 1.95-2.25 | 2.01 | 5 | 1.90-2.20 | 2.08 | |||
P4 | L | 2 | 1.13-1.20 | 1.17 | 1 | 1.30 | 1.30 | 2 | 1.13-1.17 | 1.15 | ||
W | 2 | 0.93-1.00 | 0.97 | 1 | 1.20 | 1.20 | 2 | 1.00 | 1.00 | |||
m1 | L | 7 | 1.22-1.40 | 1.30 | 7 | 1.50-1.75 | 1.65 | 7 | 1.50-1.90 | 1.74 | ||
W | 7 | 1.00-1.20 | 1.11 | 7 | 1.34-1.45 | 1.40 | 7 | 1.30-1.63 | 1.47 | |||
m2 | L | 4 | 1.53-1.87 | 1.71 | 7 | 1.80-2.00 | 1.91 | 12 | 1.80-2.45 | 2.04 | ||
W | 4 | 1.30-1.62 | 1.52 | 7 | 1.65-1.75 | 1.72 | 14 | 1.53-2.10 | 1.81 | |||
m3 | L | 11 | 1.42-1.83 | 1.54 | 11 | 1.80-2.35 | 2.12 | 5 | 1.91-2.20 | 2.11 | ||
W | 9 | 1.07-1.45 | 1.23 | 11 | 1.55-1.90 | 1.71 | 5 | 1.42-1.83 | 1.62 |
Fig. 5 Cheek teeth of Gobiomys neimongolensis from Ula Usu, Erlian Basin A. IVPP V28605.3, left M2; B. V28605.10, left p4; C. V28605.12, left m1;D. V28605.21, right m2 (reversed); E. V28605.23, left m3
V28606.1-36 | V23902.1-36 | V12521.1-7 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Li, | Wang, | |||||||||||
n | Range | Mean | n | Range | Mean | n | Range | Mean | ||||
P4 | L | 1 | 0.73 | 0.73 | 5 | 0.05-0.85 | 0.74 | 3 | 0.67-0.8 | 0.72 | ||
W | 1 | 0.94 | 0.94 | 5 | 0.65-1.2 | 1.02 | 3 | 0.92-1.10 | 0.99 | |||
M1 | L | 6 | 1.06-1.20 | 1.12 | 13 | 0.85-1.45 | 1.15 | 4 | 1.00-1.60 | 1.08 | ||
W | 6 | 1.10-1.20 | 1.14 | 13 | 0.95-1.45 | 1.20 | 4 | 1.0-1.20 | 1.08 | |||
M2 | L | 2 | 1.16-1.18 | 1.17 | 13 | 1.05-1.50 | 1.30 | 5 | 1.20-1.38 | 1.29 | ||
W | 2 | 1.24-1.30 | 1.27 | 13 | 1.10-1.70 | 1.42 | 5 | 1.20-1.40 | 1.33 | |||
M3 | L | 13 | 1.15-1.40 | 1.25 | 7 | 1.05-1.45 | 1.24 | 3 | 1.22-1.50 | 1.34 | ||
W | 13 | 1.21-1.36 | 1.28 | 7 | 1.00-1.50 | 1.24 | 3 | 1.23-1.53 | 1.35 | |||
m1 | L | 5 | 1.15-1.24 | 1.19 | 6 | 1.05-1.45 | 1.21 | 1 | 1.27 | 1.27 | ||
W | 5 | 1.00-1.10 | 1.04 | 6 | 0.90-1.15 | 1.03 | 1 | 1.20 | 1.20 | |||
m2 | L | 5 | 1.20-1.30 | 1.26 | 7 | 1.10-1.55 | 1.32 | 1 | 1.34 | 1.34 | ||
W | 5 | 1.08-1.20 | 1.15 | 7 | 1.10-1.40 | 1.24 | 1 | 1.22 | 1.22 | |||
m3 | L | 3 | 1.30-1.44 | 1.36 | 5 | 1.20-1.65 | 1.40 | |||||
W | 3 | 1.04-1.20 | 1.13 | 5 | 0.90-1.30 | 1.10 |
Table 4 Measurements of cheek teeth of Gobiomys exiguus (mm)
V28606.1-36 | V23902.1-36 | V12521.1-7 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Li, | Wang, | |||||||||||
n | Range | Mean | n | Range | Mean | n | Range | Mean | ||||
P4 | L | 1 | 0.73 | 0.73 | 5 | 0.05-0.85 | 0.74 | 3 | 0.67-0.8 | 0.72 | ||
W | 1 | 0.94 | 0.94 | 5 | 0.65-1.2 | 1.02 | 3 | 0.92-1.10 | 0.99 | |||
M1 | L | 6 | 1.06-1.20 | 1.12 | 13 | 0.85-1.45 | 1.15 | 4 | 1.00-1.60 | 1.08 | ||
W | 6 | 1.10-1.20 | 1.14 | 13 | 0.95-1.45 | 1.20 | 4 | 1.0-1.20 | 1.08 | |||
M2 | L | 2 | 1.16-1.18 | 1.17 | 13 | 1.05-1.50 | 1.30 | 5 | 1.20-1.38 | 1.29 | ||
W | 2 | 1.24-1.30 | 1.27 | 13 | 1.10-1.70 | 1.42 | 5 | 1.20-1.40 | 1.33 | |||
M3 | L | 13 | 1.15-1.40 | 1.25 | 7 | 1.05-1.45 | 1.24 | 3 | 1.22-1.50 | 1.34 | ||
W | 13 | 1.21-1.36 | 1.28 | 7 | 1.00-1.50 | 1.24 | 3 | 1.23-1.53 | 1.35 | |||
m1 | L | 5 | 1.15-1.24 | 1.19 | 6 | 1.05-1.45 | 1.21 | 1 | 1.27 | 1.27 | ||
W | 5 | 1.00-1.10 | 1.04 | 6 | 0.90-1.15 | 1.03 | 1 | 1.20 | 1.20 | |||
m2 | L | 5 | 1.20-1.30 | 1.26 | 7 | 1.10-1.55 | 1.32 | 1 | 1.34 | 1.34 | ||
W | 5 | 1.08-1.20 | 1.15 | 7 | 1.10-1.40 | 1.24 | 1 | 1.22 | 1.22 | |||
m3 | L | 3 | 1.30-1.44 | 1.36 | 5 | 1.20-1.65 | 1.40 | |||||
W | 3 | 1.04-1.20 | 1.13 | 5 | 0.90-1.30 | 1.10 |
Fig. 6 Cheek teeth of Gobiomys exiguus from Ula Usu, Erlian Basin A. IVPP V28606.1, right P4 (reversed); B. V28606.5, right M1 (reversed); C. V28606.8, left M2;D. V28606.11, left M3; E. V28606.25, left m1; F. V28606.35, left m3
V 28607.1-8 | V 12524.1-5 | |||||||
---|---|---|---|---|---|---|---|---|
Wang, | ||||||||
n | Range | Mean | n | Range | Mean | |||
P4 | L | 1 | 0.86 | 0.86 | 1 | 0.95 | 0.95 | |
W | 1 | 1.28 | 1.28 | 1 | 1.40 | 1.40 | ||
M2 | L | 7 | 1.20-1.56 | 1.30 | 1 | 1.53 | 1.53 | |
W | 7 | 1.20-1.58 | 1.37 | 1 | 1.77 | 1.77 |
Table 5 Measurements of the cheek teeth of Gobiomys asiaticus (mm)
V 28607.1-8 | V 12524.1-5 | |||||||
---|---|---|---|---|---|---|---|---|
Wang, | ||||||||
n | Range | Mean | n | Range | Mean | |||
P4 | L | 1 | 0.86 | 0.86 | 1 | 0.95 | 0.95 | |
W | 1 | 1.28 | 1.28 | 1 | 1.40 | 1.40 | ||
M2 | L | 7 | 1.20-1.56 | 1.30 | 1 | 1.53 | 1.53 | |
W | 7 | 1.20-1.58 | 1.37 | 1 | 1.77 | 1.77 |
Fig. 8 Mandible and cheek teeth of Pappocricetodon rencunensis from Ula Usu, Erlian Basin A-C. IVPP V28610.1, the right mandible with m2-3 (reversed) in occlusal (A), lingual (B), and labial (C) views; D. V28610.2, left M1; E. V28610.11, left M2; F. V28610.19, right M3 (reversed); G. V28610.20, left m1; H. V28610.37, right m2 (reversed); I. V28610.42, left m3
V28610.1-42 | V10288.1-378 | |||||||
---|---|---|---|---|---|---|---|---|
Tong, | ||||||||
n | Range | Mean | n | Range | Mean | |||
M1 | L | 8 | 1.35-1.62 | 1.46 | 62 | 1.30-1.65 | 1.47 | |
W | 8 | 1.13-1.25 | 1.17 | 62 | 0.95-1.25 | 1.23 | ||
M2 | L | 9 | 1.22-1.40 | 1.31 | 76 | 1.10-1.50 | 1.34 | |
W | 8 | 1.04-1.27 | 1.18 | 74 | 1.00-1.33 | 1.20 | ||
M3 | L | 1 | 1.10 | 1.10 | 56 | 0.95-1.25 | 1.10 | |
W | 1 | 1.10 | 1.10 | 58 | 1.00-1.25 | 1.11 | ||
m1 | L | 16 | 0.98-1.35 | 1.17 | 50 | 1.15-1.45 | 1.31 | |
W | 14 | 0.71-1.02 | 0.87 | 51 | 0.85-1.10 | 0.97 | ||
m2 | L | 3 | 1.24-1.33 | 1.29 | 53 | 1.20-1.57 | 1.41 | |
W | 3 | 1.02-1.10 | 1.06 | 53 | 0.95-1.25 | 1.10 | ||
m3 | L | 4 | 1.29-1.36 | 1.32 | 42 | 1.20-1.50 | 1.40 | |
W | 4 | 1.00-1.15 | 1.07 | 41 | 0.95-1.20 | 1.10 |
Table 6 Measurements of molars of Pappocricetodon rencunensis (mm)
V28610.1-42 | V10288.1-378 | |||||||
---|---|---|---|---|---|---|---|---|
Tong, | ||||||||
n | Range | Mean | n | Range | Mean | |||
M1 | L | 8 | 1.35-1.62 | 1.46 | 62 | 1.30-1.65 | 1.47 | |
W | 8 | 1.13-1.25 | 1.17 | 62 | 0.95-1.25 | 1.23 | ||
M2 | L | 9 | 1.22-1.40 | 1.31 | 76 | 1.10-1.50 | 1.34 | |
W | 8 | 1.04-1.27 | 1.18 | 74 | 1.00-1.33 | 1.20 | ||
M3 | L | 1 | 1.10 | 1.10 | 56 | 0.95-1.25 | 1.10 | |
W | 1 | 1.10 | 1.10 | 58 | 1.00-1.25 | 1.11 | ||
m1 | L | 16 | 0.98-1.35 | 1.17 | 50 | 1.15-1.45 | 1.31 | |
W | 14 | 0.71-1.02 | 0.87 | 51 | 0.85-1.10 | 0.97 | ||
m2 | L | 3 | 1.24-1.33 | 1.29 | 53 | 1.20-1.57 | 1.41 | |
W | 3 | 1.02-1.10 | 1.06 | 53 | 0.95-1.25 | 1.10 | ||
m3 | L | 4 | 1.29-1.36 | 1.32 | 42 | 1.20-1.50 | 1.40 | |
W | 4 | 1.00-1.15 | 1.07 | 41 | 0.95-1.20 | 1.10 |
Fig. 9 Selected molars of Allosminthus uniconjugatus from Ula Usu, Erlian Basin A. IVPP V28611.5, right M1 (reversed); B. V28611.10, right M3 (reversed); C. V28611.12, left m1; D. V28611.15, left m2; E. V28611.35, right m3 (reversed)
V28611.1-35 | V10298.1-17 | |||||||
---|---|---|---|---|---|---|---|---|
Tong, | ||||||||
n | Range | Mean | n | Range | Mean | |||
M1 | L | 6 | 0.93-1.07 | 1.01 | 2 | 1.13-1.20 | 1.17 | |
W | 5 | 0.75-0.95 | 0.88 | 2 | 0.97-1.03 | 1.00 | ||
M2 | L | 2 | 0.95-0.97 | 0.96 | 3 | 1.03-1.10 | 1.07 | |
W | 2 | 0.80-0.87 | 0.84 | 3 | 0.95-1.00 | 0.97 | ||
M3 | L | 2 | 0.85-0.87 | 0.86 | 2 | 0.83 | 0.83 | |
W | 2 | 0.81-0.84 | 0.83 | 2 | 0.83-0.87 | 0.85 | ||
m1 | L | 3 | 0.96-1.04 | 1.00 | 2 | 1.07-1.10 | 1.09 | |
W | 3 | 0.78-0.84 | 0.80 | 2 | 0.84-0.87 | 0.86 | ||
m2 | L | 18 | 1.02-1.20 | 1.13 | 3 | 1.03-1.10 | 1.07 | |
W | 18 | 0.80-0.95 | 0.88 | 2 | 0.80-0.87 | 0.84 | ||
m3 | L | 4 | 0.94-1.02 | 0.96 | 3 | 0.97-1.03 | 1.01 | |
W | 4 | 0.75-0.87 | 0.80 | 3 | 0.88-0.90 | 0.89 |
Table 7 Measurements of molars of Allosminthus uniconjugatus (mm)
V28611.1-35 | V10298.1-17 | |||||||
---|---|---|---|---|---|---|---|---|
Tong, | ||||||||
n | Range | Mean | n | Range | Mean | |||
M1 | L | 6 | 0.93-1.07 | 1.01 | 2 | 1.13-1.20 | 1.17 | |
W | 5 | 0.75-0.95 | 0.88 | 2 | 0.97-1.03 | 1.00 | ||
M2 | L | 2 | 0.95-0.97 | 0.96 | 3 | 1.03-1.10 | 1.07 | |
W | 2 | 0.80-0.87 | 0.84 | 3 | 0.95-1.00 | 0.97 | ||
M3 | L | 2 | 0.85-0.87 | 0.86 | 2 | 0.83 | 0.83 | |
W | 2 | 0.81-0.84 | 0.83 | 2 | 0.83-0.87 | 0.85 | ||
m1 | L | 3 | 0.96-1.04 | 1.00 | 2 | 1.07-1.10 | 1.09 | |
W | 3 | 0.78-0.84 | 0.80 | 2 | 0.84-0.87 | 0.86 | ||
m2 | L | 18 | 1.02-1.20 | 1.13 | 3 | 1.03-1.10 | 1.07 | |
W | 18 | 0.80-0.95 | 0.88 | 2 | 0.80-0.87 | 0.84 | ||
m3 | L | 4 | 0.94-1.02 | 0.96 | 3 | 0.97-1.03 | 1.01 | |
W | 4 | 0.75-0.87 | 0.80 | 3 | 0.88-0.90 | 0.89 |
V28612.1-17 | V10295.1-15 | |||||||
---|---|---|---|---|---|---|---|---|
Tong, | ||||||||
n | Range | Mean | n | Range | Mean | |||
M1 | L | 5 | 0.99-1.07 | 1.05 | 2 | 0.90-1.00 | 0.95 | |
W | 5 | 0.86-0.98 | 0.93 | 2 | 0.75-0.90 | 0.83 | ||
M2 | L | 12 | 0.91-1.18 | 1.06 | 7 | 0.95-1.00 | 0.97 | |
W | 12 | 0.85-1.11 | 0.99 | 7 | 0.90-0.95 | 0.91 |
Table 8 Measurements of molars of Primisminthus shanghenus (mm)
V28612.1-17 | V10295.1-15 | |||||||
---|---|---|---|---|---|---|---|---|
Tong, | ||||||||
n | Range | Mean | n | Range | Mean | |||
M1 | L | 5 | 0.99-1.07 | 1.05 | 2 | 0.90-1.00 | 0.95 | |
W | 5 | 0.86-0.98 | 0.93 | 2 | 0.75-0.90 | 0.83 | ||
M2 | L | 12 | 0.91-1.18 | 1.06 | 7 | 0.95-1.00 | 0.97 | |
W | 12 | 0.85-1.11 | 0.99 | 7 | 0.90-0.95 | 0.91 |
Fig. 11 Cheek teeth of Hulgana cf. H. ertnia from Ula Usu, Erlian Basin A. IVPP V28609.1, right P4 (reversed); B. V28609.3, left M1; C. V28609.12, left M2; D. V28609.13, left M3;E. V28609.14, right dp4 (reversed); F. V28609.15, left p4; G. V28609.20, right m1 (reversed);H. V28609.21, right m2 (reversed); I. V28609.23, right m3 (reversed)
Hulgana cf. H. ertnia | H. ertnia | |||||||
---|---|---|---|---|---|---|---|---|
V28609.1-23 | AMNH 26085-26088 | |||||||
Dawson, | ||||||||
n | Range | Mean | n | Range | Mean | |||
P4 | L | 1 | 3.15 | 3.15 | 2 | 3.50-3.90 | 3.70 | |
W | 1 | 3.85 | 3.85 | 2 | 4.60-4.80 | 4.70 | ||
M1 | L | 7 | 3.40-3.70 | 3.53 | 2 | 4.10-4.40 | 4.25 | |
W | 7 | 3.75-4.75 | 4.14 | 2 | 4.80 | 4.80 | ||
M2 | L | 2 | 3.35-3.55 | 3.45 | 2 | 3.70-3.90 | 3.80 | |
W | 1 | 4.45 | 4.45 | 2 | 5.00-5.20 | 5.10 | ||
M3 | L | 1 | 3.40 | 3.40 | ||||
W | 1 | 4.00 | 4.00 | |||||
dp4 | L | 1 | 3.20 | 3.20 | ||||
W | 1 | 2.60 | 2.60 | |||||
p4 | L | 3 | 3.50-3.95 | 3.65 | 1 | 3.90 | 3.90 | |
W | 4 | 3.00-3.40 | 3.18 | 1 | 3.90 | 3.90 | ||
m1 | L | 1 | — | — | 2 | 3.70-4.20 | 3.95 | |
W | 1 | — | — | 2 | 3.90-4.30 | 4.10 | ||
m2 | L | 2 | 4.15-4.20 | 4.18 | 2 | 3.90-4.30 | 4.10 | |
W | 2 | 3.75 | 3.75 | 2 | 4.10-4.40 | 4.25 | ||
m3 | L | 1 | 4.20 | 4.20 | 1 | 4.80 | 4.80 | |
W | 1 | 3.50 | 3.50 | 1 | 4.60 | 4.60 |
Table 9 Measurements of cheek teeth of Hulgana cf. H. ertnia and H. ertnia (mm)
Hulgana cf. H. ertnia | H. ertnia | |||||||
---|---|---|---|---|---|---|---|---|
V28609.1-23 | AMNH 26085-26088 | |||||||
Dawson, | ||||||||
n | Range | Mean | n | Range | Mean | |||
P4 | L | 1 | 3.15 | 3.15 | 2 | 3.50-3.90 | 3.70 | |
W | 1 | 3.85 | 3.85 | 2 | 4.60-4.80 | 4.70 | ||
M1 | L | 7 | 3.40-3.70 | 3.53 | 2 | 4.10-4.40 | 4.25 | |
W | 7 | 3.75-4.75 | 4.14 | 2 | 4.80 | 4.80 | ||
M2 | L | 2 | 3.35-3.55 | 3.45 | 2 | 3.70-3.90 | 3.80 | |
W | 1 | 4.45 | 4.45 | 2 | 5.00-5.20 | 5.10 | ||
M3 | L | 1 | 3.40 | 3.40 | ||||
W | 1 | 4.00 | 4.00 | |||||
dp4 | L | 1 | 3.20 | 3.20 | ||||
W | 1 | 2.60 | 2.60 | |||||
p4 | L | 3 | 3.50-3.95 | 3.65 | 1 | 3.90 | 3.90 | |
W | 4 | 3.00-3.40 | 3.18 | 1 | 3.90 | 3.90 | ||
m1 | L | 1 | — | — | 2 | 3.70-4.20 | 3.95 | |
W | 1 | — | — | 2 | 3.90-4.30 | 4.10 | ||
m2 | L | 2 | 4.15-4.20 | 4.18 | 2 | 3.90-4.30 | 4.10 | |
W | 2 | 3.75 | 3.75 | 2 | 4.10-4.40 | 4.25 | ||
m3 | L | 1 | 4.20 | 4.20 | 1 | 4.80 | 4.80 | |
W | 1 | 3.50 | 3.50 | 1 | 4.60 | 4.60 |
Superfamily or family | Species | TNS | MNI | PES (%) | PEF (%) |
---|---|---|---|---|---|
Ctenodactyloidea | Yuomys cavioides | 22 (A, 22) | 5 (A, 5) | 7.46% | 47.76% |
Yuomys magnus | 15 (B, 15) | 5 (B, 5) | 7.46% | ||
Gobiomys neimongolensis | 34 (A, 33; B, 1) | 8 (A, 7; B, 1) | 11.94% | ||
Gobiomys exiguus | 48 (A, 36; B, 12) | 10 (A, 7; B, 3) | 14.93% | ||
Gobiomys asiaticus | 8 (A, 8) | 4 (A, 4) | 5.97% | ||
Ischyromyidae | Hulgana cf. H. ertnia | 23 (A, 23) | 5 (A, 5) | 7.46% | 7.46% |
Cylindrodontidae | Proardynomys ulausuensis | 1 (A, 1) | 1 (A, 1) | 1.49% | 2.98% |
Gobiocylindrodon sp. | 1 (B, 1) | 1 (B, 1) | 1.49% | ||
Cricetidae | Pappocricetodon rencunensis | 42 (A, 42) | 10 (A, 10) | 14.93% | 14.93% |
Dipodidae | Allosminthus uniconjugatus | 36 (A, 35; B, 1) | 11 (A, 10; B, 1) | 16.42% | 26.87% |
Primisminthus shanghenus | 18 (A, 17; B, 1) | 7 (A, 6; B, 1) | 10.45% |
Table 10 Relative abundance of fossil rodents of the Sharamurunian rodent fauna in the Erlian Basin
Superfamily or family | Species | TNS | MNI | PES (%) | PEF (%) |
---|---|---|---|---|---|
Ctenodactyloidea | Yuomys cavioides | 22 (A, 22) | 5 (A, 5) | 7.46% | 47.76% |
Yuomys magnus | 15 (B, 15) | 5 (B, 5) | 7.46% | ||
Gobiomys neimongolensis | 34 (A, 33; B, 1) | 8 (A, 7; B, 1) | 11.94% | ||
Gobiomys exiguus | 48 (A, 36; B, 12) | 10 (A, 7; B, 3) | 14.93% | ||
Gobiomys asiaticus | 8 (A, 8) | 4 (A, 4) | 5.97% | ||
Ischyromyidae | Hulgana cf. H. ertnia | 23 (A, 23) | 5 (A, 5) | 7.46% | 7.46% |
Cylindrodontidae | Proardynomys ulausuensis | 1 (A, 1) | 1 (A, 1) | 1.49% | 2.98% |
Gobiocylindrodon sp. | 1 (B, 1) | 1 (B, 1) | 1.49% | ||
Cricetidae | Pappocricetodon rencunensis | 42 (A, 42) | 10 (A, 10) | 14.93% | 14.93% |
Dipodidae | Allosminthus uniconjugatus | 36 (A, 35; B, 1) | 11 (A, 10; B, 1) | 16.42% | 26.87% |
Primisminthus shanghenus | 18 (A, 17; B, 1) | 7 (A, 6; B, 1) | 10.45% |
Fig. 12 Percentage chart of the rodent assemblage compositions of the Ulangochuian (A), Sharamurunian (B), and Irdinmanhan (C) rodent faunas in the Erlian Basin, by minimum number of individuals The ctenodactyloids are represent by red, cricetids by green, ischyromyids by blue, dipodids by purple, and cylindrodontids by gray. The numbers on the horizontal axis are the minimum number of individuals and the numbers in brackets represent its percentage in the fauna
Fig. 14 Stratigraphic distribution of rodent taxa in the Erlian Basin Considering that it involves multiple localities in the Erlian Basin, the figure can only represent the occurrences of a species in the ALMA, but do not give precisely the specific formation that yielded them Ctenodactyloidea is figured as a black square, Tsaganomyidae as a hollow square, Dipodidae as a black triangle, Myodont as a hollow triangle, Cricetidae as a black circle, Ischyromyidae as a hollow circle, Archetypomyidae as a black pentagon, Alagomyidae as a hollow pentagon, and Cylindrodontidae as a hollow star. ALMA. Asian Land Mammal Age
Erlian Basin | Yuanqu Basin | |
---|---|---|
cf. Hulgana eoertnia | √ | |
Hulgana cf. H. ertnia | √ | |
cf. Hulgana. sp. | √ | |
Protataromys mianchiensis | √ | |
Yuomys cavioides | √ | √ |
Yuomys magnus | √ | |
Xueshimys dissectus | √ | |
Gobiomys neimongolensis | √ | |
Gobiomys asiaticus | √ | |
Gobiomys exiguus | √ | |
Anadianomys declivis | √ | |
Zodiomys longmensis | √ | |
Pappocricetodon rencunensis | √ | √ |
Raricricetodon zhongtiaensis | √ | |
Raricricetodon? mino | √ | |
Primisminthus cf. P. jinus | √ | |
Primisminthus shanghenus | √ | √ |
cf. Sinosminthus sp. | √ | |
Allosminthus uniconjugatus | √ | √ |
Proardynomys ulausuensis | √ | |
Gobiocylindrodon sp. | √ |
Table 11 Comparison of Sharamurunian rodent fossil assemblages from the Erlian Basin and the Yuanqu Basin
Erlian Basin | Yuanqu Basin | |
---|---|---|
cf. Hulgana eoertnia | √ | |
Hulgana cf. H. ertnia | √ | |
cf. Hulgana. sp. | √ | |
Protataromys mianchiensis | √ | |
Yuomys cavioides | √ | √ |
Yuomys magnus | √ | |
Xueshimys dissectus | √ | |
Gobiomys neimongolensis | √ | |
Gobiomys asiaticus | √ | |
Gobiomys exiguus | √ | |
Anadianomys declivis | √ | |
Zodiomys longmensis | √ | |
Pappocricetodon rencunensis | √ | √ |
Raricricetodon zhongtiaensis | √ | |
Raricricetodon? mino | √ | |
Primisminthus cf. P. jinus | √ | |
Primisminthus shanghenus | √ | √ |
cf. Sinosminthus sp. | √ | |
Allosminthus uniconjugatus | √ | √ |
Proardynomys ulausuensis | √ | |
Gobiocylindrodon sp. | √ |
[1] | Bai B, Wang Y Q, Li Q et al., 2018. Biostratigraphy and diversity of Paleogene Perissodactyls from the Erlian Basin of Inner Mongolia, China. Am Mus Novit, 3914: 1-60 |
[2] | Berkey C P, Granger W, 1923. Later sediments of the desert basins of central Mongolia. Am Mus Novit, 77: 1-16 |
[3] | Berkey C P, Morris F K, 1927. Geology of Mongolia—a reconnaissance report based on the investigations of the years 1922-1923. In: Natural History of Central Asia. Vol II. New York: American Museum of Natural History. 1-475 |
[4] | Burke J J, 1935. Pseudocylindrodon, a new rodent genus from the Pipestone Springs Oligocene of Montana. Ann Carnegie Mus, 25: 1-4 |
[5] | Burke J J, 1936. Ardynomys and Desmatolagus in the North American Oligocene. Ann Carnegie Mus, 25: 135-154 |
[6] | Chow M C, Rozhdestvensky A K, 1960. Exploration in Inner Mongolia - a preliminary account of the 1959 field work of the Sino-Soviet Paleontological Expedition (SSPE). Vert PalAsiat, 4: 1-10 |
[7] | Dashzeveg D, Meng J, 1998. A new Eocene cylindrodont rodent (Mammalia, Rodentia) from the eastern Gobi of Mongolia. Am Mus Novit, 3253: 1-18 |
[8] | Dawson M R, 1968. Oligocene rodents (Mammalia) from East Mesa, Inner Mongolia. Am Mus Novit, 2324: 1-12 |
[9] | Daxner-Höck G, 2001. New Zapodids (Rodentia) from Oligocene-Miocene deposits in Mongolia. Part 1. Senckenbergiana lethaea, 81: 351-389 |
[10] | Daxner-Höck G, Badamgarav D, Maridet O, 2014. Dipodidae (Rodentia, Mammalia) from the Oligocene and Early Miocene of Mongolia. Ann Naturh Mus Wien, Ser A, 116: 131-214 |
[11] | Douglass E, 1901. Fossil Mammalia of the White River Beds of Montana. Trans Am Philos Soc, Philadelphia, 20: 237-279 |
[12] | Emry R J, Tyutkova L A, Lucas S G et al., 1998. Rodents of the Middle Eocene Shinzhaly Fauna of eastern Kazakatan. J Vert Paleont, 18: 218-227 |
[13] | Fostowicz-Frelik Ł, Li C K, Meng J et al., 2012. New Gobiolagus (Mammalia: Lagomorpha) from the Middle Eocene of Erden Obo (Nei Mongol, China). Vert PalAsiat, 50: 219-236 |
[14] |
Fostowicz-Frelik Ł, Li C K, Mao F Y et al., 2015. A large mimotonid from the Middle Eocene of China sheds light on the evolution of lagomorphs and their kin. Sci Rep, 9394: 1-9, doi: 10.1038/srep09394
DOI URL |
[15] |
Gong H, Li Q, Ni X J, 2021. New species of Yuomys (Rodentia, Ctenodactyloidea) from the upper Eocene of eastern Ningxia, China. J Vert Paleont, doi: 10.1080/02724634.2021.1938099
DOI URL |
[16] | Granger W, 1925. Records of fossils, Mongolia 1925. Third Central Asiatic Expeditions (Field Notes). New York: American Museum of Natural History. 1-76 |
[17] | Granger W, Berkey C P, 1922. Discovery of Cretaceous and older Tertiary strata in Mongolia. Am Mus Novit, 42: 1-7 |
[18] | Huang X S, Zhang J N, 1990. First record of Early Tertiary mammals from southern Yunnan. Vert PalAsiat, 28: 296-303 |
[19] | Jin J H, Liao W B, Wang B S et al., 2003. Global change in Cenozoic and evolution of flora in China. Guihaia, 23: 217-225 |
[20] | Li C K, 1975. Yuomys, a new ischyromyid rodent genus from the Upper Eocene of North China. Vert PalAsiat, 13: 58-70 |
[21] | Li C K, Ting S Y, 1983. The Paleogene mammals of China. Bull Carnegie Mus Nat Hist, 21: 1-93 |
[22] | Li Q, 2012. Middle Eocene Cricetids (Rodentia, Mammalia) from the Erlian Basin, Nei Mongol, China. Vert PalAsiat, 50: 360-364 |
[23] | Li Q, 2016. Eocene fossil rodent assemblages from the Erlian Basin (Inner Mongolia, China): biochronological implications. Palaeoworld, 25: 95-103 |
[24] | Li Q, 2017. Eocene ctenodactyloid rodent assemblages and diversification from Erden Obo, Nei Mongol, China. Hist Biol, 31: 813-823 |
[25] | Li Q, 2018. Additional cricetid and dipodid rodent material from the Erden Obo section, Erlian Basin (Nei Mongol, China) and its biochronological implications. Palaeoworld, 27: 490-505 |
[26] | Li Q, 2020. New late Eocene cylindrodontid rodents from the Erlian Basin (Nei Mongol, China). Palaeobio Palaeoenv, 100: 1083-1094 |
[27] | Li Q, 2021. Additional tsaganomyid, cylindrodontid and ctenodactyloid rodent materials from the Erden Obo section, Erlian Basin (Nei Mongol, China). Vert PalAsiat, 59: 1-17 |
[28] | Li Q, Meng J, 2015. New ctenodactyloid rodents from the Erlian Basin, Nei Mongol, China, and the phylogenetic relationships of Eocene Asian ctenodactyloids. Am Mus Novit, 3828: 1-58 |
[29] | Li Q, Meng J, Wang Y Q, 2016. New cricetid rodents from strata near the Eocene-Oligocene boundary in Erden Obo Section (Nei Mongol, China). PloS One, 11: 1-17 |
[30] | Li Q, Gong Y X, Wang Y Q, 2017. New dipodid rodents from the Late Eocene of Erden Obo (Nei Mongol, China). Hist Biol, 29: 692-703 |
[31] |
Li Q, Wang Y Q, Mao F Y et al., 2019. A new Eocene cylindrodontid rodent from the Erlian Basin (Nei Mongol, China) and its implications for phylogeny and biochronology. J Vert Paleont, 39: e1680990, doi: 10.1080/02724634.2019.1680990
DOI URL |
[32] | Luterbacher H P, Ali J R, Brinkhuis H et al., 2004. The Paleogene Period. In: Gradstein F M, Ogg J G, Smith A eds. A Geological Time Scale 2004. Cambridge: Cambridge University Press. 384-408 |
[33] | Matthew W D, Granger W, 1925. New creodonts and rodents from the Ardyn Obo Formation of Mongolia. Am Mus Novit, 193: 1-7 |
[34] | Matthew W D, Granger W, 1926. Two new perissodactyls from the Arshanto Eocene of Mongolia. Am Mus Novit, 208: 1-5 |
[35] | Meng J, Ye J, Huang X S, 1999. Eocene mammals from the Bayan Ulan of Nei Mongol (Inner Mongolia) and comments on related straigraphy. Vert PalAsiat, 37: 165-174 |
[36] | Romer A S, 1966. Vertebrate Paleontology. Chicago and London: University of Chicago Press. 1-467 |
[37] | Rose K D, 1981. The Clarkforkian land-mammal age and mammalian faunal composition across the Paleocene-Eocene boundary. Pap Palaeontol, 26: 1-197 |
[38] | Shi R L, 1989. Late Eocene mammalian fauna of Huangzhuang, Qufu, Shandong. Vert PalAsiat, 27: 87-102 |
[39] | Tong Y S, 1992. Pappocricetodon, a pre-Oligocene cricetid genus (Rodentia) from central China. Vert PalAsiat, 30: 1-16 |
[40] | Tong Y S, 1997. Middle Eocene small mammals from Liguanqiao Basin of Henan Province and Yuanqu Basin of Shanxi Province, Central China. Palaeon Sin, New Ser C, 26: 1-256 |
[41] | Tong Y S, Zheng S H, Qiu Z D, 1995. Cenozoic mammal ages of China. Vert PalAsiat, 33: 290-314 |
[42] | Speijer R P, Pälike H, Hollis C J et al., 2020. The Paleogene Period. In: Gradstein F M, Ogg J G, Schmitz M D et al. eds. Geologic Time Scale 2020. Oxford: Elsevier BV. 1087-1140 |
[43] | Vandenberghe N, Hilgen F L, Speijer R P, 2012. The Paleogene Period. In: Gradstein F M, Ogg J G, Schmitz M D et al. eds. The Geologic Time Scale 2012. Oxford: Elsevier BV. 855-922 |
[44] | Wang B Y, 1985. Zapodidae (Rodentia, Mammalia) from the Lower Oligocene of Qujing, Yunnan, China. Mainzer geowiss Mitt, 14: 354-367 |
[45] | Wang B Y, 1997a. The Mid-Tertiary Ctenodactylidae (Rodentia, Mammalia) of eastern and central Asia. Bull Am Mus Nat Hist, 234: 1-88 |
[46] | Wang B Y, 1997b. Chronological sequence and subdivision of Chinese Oligocene mammalian faunas. J Stratigr, 21: 183-191 |
[47] | Wang B Y, 2001. Eocene ctenodactyloids (Rodentia, Mammalia) from Nei Mongol, China. Vert PalAsiat, 39: 98-114 |
[48] | Wang B Y, 2007. Late Eocene cricetids (Rodentia, Mammalia) from Nei Mongol, China. Vert PalAsiat, 45: 195-212 |
[49] | Wang B Y, 2008. Additional rodent material from Houldjin Formation of Erenhot, Nei Mongol, China. Vert PalAsiat, 46: 21-30 |
[50] | Wang B Y, 2017. Discovery of Yuomys from Altun Shan, Xinjiang, China. Vert PalAsiat, 5: 227-232 |
[51] | Wang B Y, 2019a. “Cylindrodontidae”. In: Qiu Z X, Li C K eds. Palaeovertebrata Sinica, VIII, Basal Synapsids and Mammals, Fascicle 5, Glires II: Rodentia I. Beijing: Science Press. 449-478 |
[52] | Wang B Y, 2019b. “Gobiomyidae”. In: Qiu Z X, Li C K eds. Palaeovertebrata Sinica, VIII, Basal Synapsids and Mammals, Fascicle 5, Glires II: Rodentia I. Beijing: Science Press. 436-440 |
[53] | Wang B Y, Dawson M R, 1994. A primitive cricetid (Mammalia: Rodentia) from the Middle Eocene of Jiangsu Province, China. Ann Carnegie Mus, 63: 239-256 |
[54] | Wang B Y, Zhou S Q, 1982. Late Eocene mammals from Pingchangguan Basin, Henan. Vert PalAsiat, 20: 203-215 |
[55] | Wang B Y, Wu W Y, Qiu Z D, 2020. “Cricetidae”. In: Qiu Z X, Li C K, Zheng S H et al. eds. Palaeovertebrata Sinica VIII, Basal Synapsids and Mammals, Fascicle 5, Glires II: Rodentia II. Beijing: Science Press. 10-151 |
[56] | Wang J W, 1978. Fossil Amynodontidae and Ischyromyidae of Tongbo, Henan. Vert PalAsiat, 16: 22-29 |
[57] | Wang Y Q, Meng J, Ni X J et al., 2007. Major events of Paleogene mammal radiation in China. Geol J, 42: 415-430 |
[58] | Wang Y Q, Meng J, Christopher K B et al., 2010. Early Paleogene stratigraphic sequences, mammalian evolution and its response to environmental changes in Erlian Basin, Inner Mongolia, China. Sci China Earth Sci, 53: 1918-1926 |
[59] | Wang Y Q, Meng J, Jin X, 2012. Comments on Paleogene localities and stratigraphy in the Erlian Basin, Nei Mongol, China. Vert PalAsiat, 50: 181-203 |
[60] |
Wang Y Q, Li Q, Bai B et al., 2019. Paleogene integrative stratigraphy and timescale of China. Sci China Earth Sci, 62: 287-309
DOI |
[61] | Wood A E, 1970. The Early Oligocene rodent Ardynomys (Family Cylindrodontidae) from Mongolia and Montana. Am Mus Novit, 2418: 1-18 |
[62] | Woodburne J M, 1987. Mammal ages, stages, and zones. In: Woodburne M O ed. Cenozoic Mammals of North America: Geochronology and Biostratigraphy. Berkeley: University of California Press. 18-23 |
[63] | Ye J, 1983. Mammalian fauna from the Late Eocene of Ulan Shiren Area, Inner Mongolia. Vert PalAsiat, 21: 109-118 |
[64] | Zdansky O, 1930. Die alttertiären Säugetiere Chinas nebst stratigraphischen Bemerkungen. Palaeont Sin, New Ser C, 6: 1-87 |
[1] | Joonas Wasiljeff, 张兆群. 内蒙古阿拉善左旗乌兰塔塔尔最晚始新世-渐新世剖面的区域年代地层意义. 古脊椎动物学报, 2022, 60(1): 42-53. |
[2] | 安晓青, 张兆群. 气候变化与早期兔形类的演化:基于内蒙古Ordolagus新材料的研究. 古脊椎动物学报, 2021, 59(2): 138-168. |
[3] | 王倩, 刘艳, 王李花, 傅明楷, 张兆群. 内蒙古韩家营玄武岩夹层中三趾马动物群化石. 古脊椎动物学报, 2021, 59(2): 125-137. |
[4] | 张立民, 董为, 倪喜军, 李强. 晚中新世晚期土城子小哺乳动物组合及土城子动物群在内蒙古中部地区新近纪哺乳动物群序列中的位置. 古脊椎动物学报, 2021, 59(1): 45-63. |
[5] | 邱铸鼎, 王晓鸣, 李强, 李录, 王洪江, 陈海峰. 内蒙古哈拉津胡舒晚中新世动物群. 古脊椎动物学报, 2021, 59(1): 19-26. |
[6] | 李茜. 内蒙古二连盆地额尔登敖包剖面新增查干鼠类、圆柱齿鼠类及梳趾鼠类化石材料. 古脊椎动物学报, 2021, 59(1): 1-18. |
[7] | 刘俊. 二叠纪脑包沟组的四足动物群——4. 二齿兽类的多样性. 古脊椎动物学报, 2019, 57(3): 173-180. |
[8] | 白 滨, 王元青, 孟 津. 内蒙古二连盆地沙拉木伦地区中始新世全脊貘(Teleolophus)(奇蹄目:貘超科)头后骨骼研究. 古脊椎动物学报, 2018, 56(3): 193-215. |
[9] | 董 为, 刘文晖, 张立民, 白炜鹏, 蔡保全. 内蒙古化德土城子地点晚中新世麝科化石新材料. 古脊椎动物学报, 2018, 56(3): 229-247. |
[10] | 董 为,刘文晖,张立民,蔡保全. 内蒙古化德土城子地点晚中新世鹿科化石新材料. 古脊椎动物学报, 2018, 56(2): 157-175. |
[11] | Thomas A. STIDHAM,王元青 . 内蒙古中始新世一似ameghinornithid鸟类(鸟纲: Cariamae: Ameghinornithidae?). 古脊椎动物学报, 2017, 55(3): 218-226. |
[12] | 董 为,张立民,刘文晖. 内蒙古赤峰初头朗早更新世哺乳动物群的新材料及二元相似性分析. 古脊椎动物学报, 2017, 55(3): 257-273. |
[13] | Leena SUKSELAINEN,Hannele PELTONEN,Anu KAAKINEN,张兆群. 内蒙古大庙中新世小哺乳动物化石埋藏学研究. 古脊椎动物学报, 2017, 55(1): 71-88. |
[14] | 王晓鸣,王洪江,江左其杲 . 内蒙古敖尔班地区早中新世犬熊类的新记录. 古脊椎动物学报, 2016, 54(1): 21-35. |
[15] | 姚熙,王孝理,舒柯文,王烁,Thomas STIDHAM,徐星. 内蒙古二连盆地二连组亚洲近颌龙(兽脚类:窃蛋龙类)一未定种. 古脊椎动物学报, 2015, 53(4): 291-298. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||