古脊椎动物学报 ›› 2023, Vol. 61 ›› Issue (3): 198-211.DOI: 10.19615/j.cnki.2096-9899.230630CSTR: 32090.14.j.cnki.2096-9899.230630
收稿日期:
2023-04-11
出版日期:
2023-07-20
发布日期:
2023-07-25
通讯作者:
* dengtao@ivpp.ac.cn基金资助:
LI Shi-Jie1,2, DENG Tao1,2,*()
Received:
2023-04-11
Published:
2023-07-20
Online:
2023-07-25
摘要:
现代犀牛都属于犀科中的真犀族,目前中国最早的真犀族动物化石记录是来自河北磁县九龙口中中新世的磁县“双角犀”, 化石材料为幼年头骨和下颌。分析研究认为:这个物种与现生的双角犀Dicerorhinus的确存在相似之处,但也存在一些头骨结构上的差异,不应该被归入现生属。九龙口的真犀其实更加接近欧洲中中新世的拉尔泰犀Lartetotherium, 尤其是西班牙La Retama中中新世的材料,并应该归入该属。这一发现指示此时在欧亚大陆两端存在生物迁徙交流。九龙口动物群是中国中中新世目前唯一记录有真犀族动物的化石点,说明其环境相对湿润封闭,和当时中国更靠西北的化石点存在差异。研究发现鼻切迹位置是真犀族动物演化中具有较好演化水平指示意义的特征。现生苏门犀鼻切迹相对靠前以及其整体与磁县拉尔泰犀的相似性,指示这个属在与史蒂芬犀、披毛犀等更特化的双角犀分化后超过1000万年的演化历史中,只经历了比较小的形态学变化,这可能和南亚/东南亚地区环境相对稳定,选择压力较低有关。
中图分类号:
李世杰, 邓涛. 河北磁县九龙口中中新世动物群中真犀的再研究. 古脊椎动物学报, 2023, 61(3): 198-211.
LI Shi-Jie, DENG Tao. Restudy of Rhinocerotini fossils from the Miocene Jiulongkou Fauna of China. Vertebrata Palasiatica, 2023, 61(3): 198-211.
Measurement | Left | Right |
---|---|---|
Distance between nasal tip and bottom of nasal notch | 62.73 | 75.08 |
Distance between nasal notch and orbit | 110.16 | 121.66 |
Width of nasal base | 70.71 | |
Cranial height in front of M1 | 136.91 | 142.27 |
Width of palate in front of M1 | 120.06 | |
DP1-4 L | 118.82 | 119.03 |
I1 L (alveolus) | 35.13 | 33.24 |
I1 W (alveolus) | 17.82 | 17.94 |
DP1 L | 19.72 | 21.46 |
DP1 W | 18.13 | 20.25 |
DP2 L | >29.15 | 27.57 |
DP2 W | 30.17 | 30.35 |
DP3 L | 35.62 | 37.38 |
DP3 W | 36.99 | 38.27 |
DP4 L | 43.02 | 41.44 |
DP4 W | 42.21 | 40.89 |
M1 L | 49.35 | 49.2 |
M1 W | 49.41 | 45.91 |
Distance between posterior borders of symphysis and ascending ramus | 217.92 | |
Height of horizontal ramus in front of dp2 | 59.75 | |
Height of horizontal ramus in front of dp3 | 61.13 | |
Height of horizontal ramus in front of dp4 | 64.61 | |
Height of horizontal ramus in front of m1 | 56.15 | 63.62 |
Width of symphysis | 41.11 | |
Antero-posterior diameter of ascending ramus | 98.85 | |
Transverse diameter of condyle | >44.24 | |
Height at condyle | >142.67 | |
Height at coronoid process | 169.79 | |
dp1-4 L | 114.57 | 109.74 |
di1 L | 6.84 | 6.59 |
di1 W | 6.68 | 6.43 |
dp1 L | 20.82 | 14.69 |
dp1 W | 11.03 | 9.28 |
dp2 L | 20.49 | 21.89 |
dp2 W | 15.52 | 14.4 |
dp3 L | 35.03 | 34.88 |
dp3 AW | 18.11 | 17.24 |
dp3 PW | 22.67 | 19.71 |
dp4 L | 35.6 | 35.75 |
dp4 AW | 24.22 | 19.85 |
dp4 PW | 27.51 | 22.7 |
m1 L | 41.3 | >39.59 |
m1 AW | 21.78 | 22.96 |
m1 PW | 27.21 | 22.27 |
Table 1 Measurements of Lartetotherium cixianensis, Jiulongkou (mm)
Measurement | Left | Right |
---|---|---|
Distance between nasal tip and bottom of nasal notch | 62.73 | 75.08 |
Distance between nasal notch and orbit | 110.16 | 121.66 |
Width of nasal base | 70.71 | |
Cranial height in front of M1 | 136.91 | 142.27 |
Width of palate in front of M1 | 120.06 | |
DP1-4 L | 118.82 | 119.03 |
I1 L (alveolus) | 35.13 | 33.24 |
I1 W (alveolus) | 17.82 | 17.94 |
DP1 L | 19.72 | 21.46 |
DP1 W | 18.13 | 20.25 |
DP2 L | >29.15 | 27.57 |
DP2 W | 30.17 | 30.35 |
DP3 L | 35.62 | 37.38 |
DP3 W | 36.99 | 38.27 |
DP4 L | 43.02 | 41.44 |
DP4 W | 42.21 | 40.89 |
M1 L | 49.35 | 49.2 |
M1 W | 49.41 | 45.91 |
Distance between posterior borders of symphysis and ascending ramus | 217.92 | |
Height of horizontal ramus in front of dp2 | 59.75 | |
Height of horizontal ramus in front of dp3 | 61.13 | |
Height of horizontal ramus in front of dp4 | 64.61 | |
Height of horizontal ramus in front of m1 | 56.15 | 63.62 |
Width of symphysis | 41.11 | |
Antero-posterior diameter of ascending ramus | 98.85 | |
Transverse diameter of condyle | >44.24 | |
Height at condyle | >142.67 | |
Height at coronoid process | 169.79 | |
dp1-4 L | 114.57 | 109.74 |
di1 L | 6.84 | 6.59 |
di1 W | 6.68 | 6.43 |
dp1 L | 20.82 | 14.69 |
dp1 W | 11.03 | 9.28 |
dp2 L | 20.49 | 21.89 |
dp2 W | 15.52 | 14.4 |
dp3 L | 35.03 | 34.88 |
dp3 AW | 18.11 | 17.24 |
dp3 PW | 22.67 | 19.71 |
dp4 L | 35.6 | 35.75 |
dp4 AW | 24.22 | 19.85 |
dp4 PW | 27.51 | 22.7 |
m1 L | 41.3 | >39.59 |
m1 AW | 21.78 | 22.96 |
m1 PW | 27.21 | 22.27 |
Fig. 1 Comparison of craniums in dorsal (A1, B1, C1), ventral (A2, B2, C2), and lateral (A3, B3, C3) views A. Lartetotherium cf. L. sansaniense CSIC RE927, La Retama, Spain (Cerde?o, 1996a) (A3 reversed);B. L. cixianensis IVPP V4833 (plaster at nose is marked in red), Jiulongkou, Hebei, northern China;C. Dicerorhinus sumatrensis AMNH M173576. Scale bars = 5 cm
Fig. 2 Comparison of premaxillae in ventral view A. Lartetotherium cixianensis IVPP V4841, Jiulongkou, Hebei, northern China;B. Dicerorhinus sumatrensis V2877, Liucheng Gigantopithecus Cave, Guangxi, southern China;C. D. sumatrensis MNHN A7965
Fig. 3 Photographs of the mandible of Lartetotherium cixianensis IVPP V4833, Jiulongkou, Hebei, northern China A. anterior view, showing the di1; B, C, E. medial (B), ventral (C) and lateral (E) views of the left side; D. lateral view of the right side
Fig. 4 Nasal notch of some Rhinocerotini A. Dicerorhinus sumatrensis (M1 just erupted) AMNH M173576; B. D. sumatrensis MNHN A7965;C. Pliorhinus ringstroemi (DP4 erupted) HMV2049; D. P. ringstroemi HMV1115;E. Chilotherium wimani (DP4 just erupted) HMV2057; F. C. wimani HMV2058. Not to scale
[1] | Antoine P O, Saraç G, 2005. Rhinocerotidae (Mammalia, Perissodactyla) from the late Miocene of Akkasdagi, Turkey. Geodiversitas, 27: 601-632 |
[2] | Antoine P O, Bulot C, Ginsburg L, 2000. Les rhinocerotides (Mammalia, Perissodactyla) de l'Orleanien des bassins de la Garonne et de la loire (France): interet biostratigraphique. Ser IC R Acad Sci, Ser IIA: Earth Planet Sci, 330: 571-576 |
[3] |
Antoine P O, Reyes M C, Amano N et al., 2022. A new rhinoceros clade from the Pleistocene of Asia sheds light on mammal dispersals to the Philippines. Zool J Linn Soc Lond, 194: 416-430
DOI URL |
[4] | Cerdeño E, 1996a. Lartetotherium (Rhinocerotidae) en la fauna con Hispanotherium del Mioceno Medio de La Retama, Cuenca, España. Span J Paleontol, 11: 193-197 |
[5] | Cerdeño E, 1996b. Rhinocerotidae from the middle Miocene of the Tung-gur formation, Inner Mongolia (China). Am Mus Novit, 3184: 1-43 |
[6] | Chen G F, Wu W Y, 1976. Mammalian fossils from the Miocene Jiulongkou locality, Cixian County, Heibei Province. Vert PalAsiat, 14: 6-15 |
[7] | Chen S K, Liu Y, 2013. The taxonomic status of “Macrotherium cf. M. brevirostris” from the Middle Miocene of Jiulongkou, Cixian County, Hebei Province. Vert PalAsiat, 51: 205-210 |
[8] | Chen S K, Pang L B, Yan Y L et al., 2021. First discovery of Dicerorhinus sumatrensis from Yanjinggou provides insights into the Pleistocene Rhinocerotidae of South China. Acta Geol Sin - Engl, 95: 1065-1072 |
[9] | Colbert E H, 1934. A new rhinoceros from the Siwalik beds of India. Am Mus Novit, 749: 1-14 |
[10] | Colbert E H, 1935. Siwalik mammals in the American Museum of Natural History. Trans Am Philos Soc, New Ser, 26: 1-401 |
[11] |
Deng T, 2003. New material of Hispanotherium matritense (Rhinocerotidae, Perissodactyla) from Laogou of Hezheng County (Gansu, China), with special reference to the Chinese Middle Miocene elasmotheres. Geobios-Lyon, 36: 141-150
DOI URL |
[12] |
Deng T, 2004. A new species of the rhinoceros Alicornops from the Middle Miocene of the Linxia Basin, Gansu, China. Palaeontology, 47: 1427-1439
DOI URL |
[13] | Deng T, 2006. Chinese Neogene mammal biochronology. Vert PalAsiat, 44: 143-163 |
[14] | Deng T, 2015. Chinese Neogene Rhinoceroses. Shanghai: Shanghai Scientific and Technical Publishers. 1-154 |
[15] |
Deng T, Wang X, Fortelius M et al., 2011. Out of Tibet: Pliocene wooly rhino suggests high-plateau origin of ice age megaherbivores. Science, 333: 1285-1288
DOI PMID |
[16] | Filhol H, 1891. Études sur les mammifères fossiles de Sansan. Ann Sci Geol, 21: 1-319 |
[17] |
Fjeldsa J, Lovett J, 1997. Geographical patterns of old and young species in African forest biota: the significance of specific montane areas as evolutionary centers. Biodivers Conserv, 6: 325-346
DOI URL |
[18] | Geraads D, 2010. Rhinocerotidae. In: Werdelin L, Sanders W J eds. Cenozoic Mammals of Africa. Oakland: University of California Press. 675-690 |
[19] | Giaourtsakis I X, 2022. The fossil record of rhinocerotids (Mammalia: Perissodactyla: Rhinocerotidae) in Greece. In: Vlachos E ed. Fossil Vertebrates of Greece Vol 2. Cham: Springer, Cham. 409-500 |
[20] | Ginsburg L, 1974. Les Rhinocérotidés du Miocène de Sansan (Gers). C R Acad Sci, 278: 597-600 |
[21] | Ginsburg L, Bulot C, 1984. Les Rhinocerotidae (Perissodactyla, Mammalia) du Miocène de Bézian à La Romieu (Gers). Bull Mus Natl Hist Nat, 6: 353-377 |
[22] | Heissig K, 1972. Paläontologische und geologische Untersuchungen im Tertiär von Pakistan - 5. Rhinocerotidae (Mammalia) aus den unteren und mittleren Siwalik-Schichten. Abh Akad Wiss Math-Phys Kl, Folge, 152: 1-112 |
[23] | Heissig K, 1999. Family Rhinocerotidae. In: Rössner G E, Heissig K eds. The Miocene Land Mammals of Europe. München: Verlag Dr. Friedrich Pfeil. 175-188 |
[24] | Heissig K, 2012. Les Rhinocerotidae (Perissodactyla) de Sansan. Mém Mus Natl Hist Nat, 203: 317-485 |
[25] | Hooijer D A, 1966. Miocene rhinoceroses of East Africa. Bull Br Mus (Nat Hist), Geol, 13: 119-190 |
[26] | Hwang Y T, Larivière S, 2003. Mydaus javanensis. Mamm Species: 1-3 |
[27] | Hwang Y T, Larivière S, 2004. Mydaus marchei. Mamm Species: 1-3 |
[28] |
Jiangzuo Q G, Wang S, Li C et al., 2019. New material of Gobicyon (Carnivora, Amphicyonidae, Haplocyoninae) from northern China and a review of Aktaucyonini evolution. Pap Palaeontol, 7: 307-327
DOI URL |
[29] |
Jiangzuo Q G, Sun D H, Flynn J J, 2020. Paleobiogeographic implications of additional Felidae (Carnivora, Mammalia) specimens from the Siwaliks. Hist Biol, 33: 1767-1780
DOI URL |
[30] |
Kaya F, Bibi F, Zliobaite I et al., 2018. The rise and fall of the Old World savannah fauna and the origins of the African savannah biome. Nat Ecol Evol, 2: 241-246
DOI PMID |
[31] | Khan A M, Cerdeño E, Akhtar M et al., 2014. New fossils of Gaindatherium (Rhinocerotidae, Mammalia) from the Middle Miocene of Pakistan. Turk J Earth Sci, 23: 452-461 |
[32] | Lartet E, 1851. Notice sur la colline de Sansan, suivie d’une récapitulation des diverses espèces d’animaux vertébrés fossiles, trouvés soit à Sansan, soit dans d’autres gisements du terrain tertiaire miocène dans le bassin souspyrénéen. Auch: J A Portes. 1-45 |
[33] |
Liu J, Li J J, Song C H et al., 2016. Palynological evidence for late Miocene stepwise aridification on the northeastern Tibetan Plateau. Clim Past, 12: 1473-1484
DOI URL |
[34] |
Liu S, Westbury M V, Dussex N et al., 2021. Ancient and modern genomes unravel the evolutionary history of the rhinoceros family. Cell, 184: 4874-4885
DOI PMID |
[35] |
Margaryan A, Sinding M H S, Liu S et al., 2020. Recent mitochondrial lineage extinction in the critically endangered Javan rhinoceros. Zool J Linn Soc, 190: 372-383
DOI URL |
[36] | Mein P, 1999. European Miocene mammal biochronology. In: Rösner G E, Heissig K eds. The Miocene Land Mammals of Europe. München: Verlag Dr. Friedrich Pfeil. 25-38 |
[37] | Pandolfi L, 2018. Evolutionary history of Rhinocerotina (Mammalia, Perissodactyla). Fossilia, 2018: 27-32 |
[38] |
Pandolfi L, 2023. Reassessing the phylogeny of Quaternary Eurasian Rhinocerotidae. J Quat Sci, 38(3): 291-294
DOI URL |
[39] |
Pandolfi L, Pierre-Olivier A, Bukhsianidze M et al., 2021. Northern Eurasian rhinocerotines (Mammalia, Perissodactyla) by the Pliocene-Pleistocene transition: phylogeny and historical biogeography. J Syst Palaeontol, 19: 1031-1057
DOI URL |
[40] | Pocock R I, 1939. The Fauna of British India, Including Ceylon and Burma: Mammalia 1. London: Taylor & Francis. 1-463 |
[41] | Pocock R I, 1941. The Fauna of British India, Including Ceylon and Burma: Mammalia 2. London: Taylor & Francis. 1-503 |
[42] | Qiu Z X, 1990. The Chinese Neogene mammalian biochronology: its correlation with the European Neogene mammalian zonation. In: Lindsay E H, Fahlbusch V, Mein P eds. European Neogene Mammal Chronology. New York: Springer. 527-556 |
[43] | Qiu Z X, Wang B Y, 2007. Paracerathere Fossils of China. Beijing: Science Press. 1-396 |
[44] | Qiu Z X, Ye J, Cao J X, 1988. A new species of Percrocuta from Tongxin, Ningxia. Vert PalAsiat, 26: 116-127 |
[45] | Qiu Z X, Qiu Z D, Deng T et al., 2013. Neogene land mammal stages/ages of China: Toward the goal to establish an Asian land mammal stage/age scheme. In: Wang X M, Flynn L J, Fortelius M eds. Neogene Terrestrial Mammalian Biostratigraphy and Chronology of Asia. New York: Columbia University Press. 29-90 |
[46] |
Tong H W, 2012. Evolution of the non-Coelodonta dicerorhine lineage in China. C R Palevol, 11: 555-562
DOI URL |
[47] |
Tong H W, Guérin C, 2009. Early Pleistocene Dicerorhinus sumatrensis remains from the Liucheng Gigantopithecus Cave, Guangxi, China. Geobios-Lyon, 42: 525-539
DOI URL |
[48] |
Van Couvering J A, Delson E, 2020. African land mammal ages. J Vert Paleont, 40: 5, e1803340, doi: 10.1080/02724634.2020.1803340
DOI |
[49] | Wang S Q, Zong L, Yang Q et al., 2016. Biostratigraphic subdividing of the Neogene Dingjiaergou mammalian fauna, Tongxin County, Ningxia Province, and its background for the uplift of the Tibetan Plateau. Quat Sci, 36: 789-809 |
[50] |
Wang X M, Qiu Z X, Opdyke N D, 2003. Litho-, bio-, and magnetostratigraphy and paleoenvironment of Tunggur Formation (Middle Miocene) in central Inner Mongolia, China. Am Mus Novit, 3411: 1-31
DOI URL |
[51] | Werdelin L, Sanders W J, 2010. Rhinocerotidae. In: Werdelin L ed. Cenozoic Mammals of Africa. Oakland: University of California Press. 675-690 |
[52] |
Westerhold T, Marwan N, Drury A J et al., 2020. An astronomically dated record of Earth’s climate and its predictability over the last 66 million years. Science, 369: 1383-1387
DOI PMID |
[53] |
Xiong W Y, 2022. New species of Percrocuta (Carnivora, Hyaenidae) from the early Middle Miocene of Tongxin, China. Hist Biol, 35(5): 1-22
DOI URL |
[54] |
Zachos J, Pagani M, Sloan L et al., 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292: 686-693
DOI PMID |
[55] |
Zhang Z G, Han W, Fang X et al., 2013. Late Miocene-Pleistocene aridification of Asian inland revealed by geochemical records of lacustrine-fan delta sediments from the western Tarim Basin, NW China. Palaeogeogr Palaeoclimatol Palaeoecol, 377: 52-61
DOI URL |
[1] | 王世骐, 张晓晓, 李春晓. 戈壁锯齿象(Serridentinus gobiensis Osborn & Granger, 1932)和同心中新乳齿象(Miomastodon tongxinensis Chen, 1978)再研究:关于粗壮型轭齿象(Zygolophodon)的讨论. 古脊椎动物学报, 2020, 58(2): 134-158. |
[2] | 杨湘雯,李 雨, 王世骐 . 临夏盆地中中新统维曼嵌齿象(Gomphotherium wimani) (长鼻目,嵌齿象科)的头骨及颊齿. 古脊椎动物学报, 2017, 55(4): 331-346. |
[3] | 邓涛,卢小康,史勤勤,孙博阳,王世骐. 甘肃临夏盆地中中新世皇冠鹿一新种. 古脊椎动物学报, 2014, 52(2): 170-182. |
[4] | 陈少坤,刘 艳 . 河北磁县九龙口中中新世“Macrotherium cf. M. brevirostris”的分类地位. 古脊椎动物学报, 2013, 51(3): 205-210. |
[5] | 王世骐,刘善品,颉光普,刘 佳,彭廷江,侯素宽. 甘肃天水武山县南峪村的维曼嵌齿象及其生物地层学意义. 古脊椎动物学报, 2013, 51(1): 71-84. |
[6] | 吴文裕,倪喜军,叶 捷,孟 津,毕顺东. 新疆准噶尔盆地北缘中中新世早期的原圆齿鼠(Promylagaulinae, Mylagaulidae). 古脊椎动物学报, 2013, 51(1): 55-70. |
[7] | 张兆群,Anu Kaakinen, 王李花,刘丽萍,刘 艳,傅铭楷. 内蒙古大庙中中新世上猿化石地点的鼠兔科化石. 古脊椎动物学报, 2012, 50(3): 281-292. |
[8] | Sevket SEN, Margarita A. ERBAJEVA. 贝加尔湖区中中新世Aya洞穴地点戈壁古仓鼠一新种. 古脊椎动物学报, 2011, 49(3): 257-274. |
[9] | 魏涌澎. 新疆准噶尔盆地北缘中中新世阿特拉旱松鼠及其生态环境讨论. 古脊椎动物学报, 2010, 48(3): 220-234. |
[10] | 叶捷, 吴文裕, 孟津. 准噶尔盆地北缘哈拉玛盖组中的Anchitherium. 古脊椎动物学报, 2005, 43(02): 100-109. |
[11] | 伍少远. Alloptox gobiensis (兔形目,鼠兔科) 头骨形态及系统位置. 古脊椎动物学报, 2003, 41(02): 115-130. |
[12] | 吴文裕, 孟 津, 叶 捷. 新疆准噶尔盆地北缘Pliopithecus的发现. 古脊椎动物学报, 2003, 41(01): 76-86. |
[13] | 魏明瑞, 郭建崴. 宁夏同心中中新世三种植食性哺乳动物牙齿碳同位素分析. 古脊椎动物学报, 2002, 40(04): 300-304. |
[14] | 吴文裕, 叶,捷, 孟津 毕顺东, 刘丽萍 , 张翼. 新疆准噶尔盆地北缘中中新世兔形类新材料. 古脊椎动物学报, 1998, 36(04): 319-329. |
[15] | 王晓鸣, 叶捷, 孟津, 吴文裕, 刘丽萍, 毕顺东. 新疆准噶尔盆地北缘中中新世食肉类. 古脊椎动物学报, 1998, 36(03): 218-243. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||