古脊椎动物学报 ›› 2024, Vol. 62 ›› Issue (3): 225-244.DOI: 10.19615/j.cnki.2096-9899.240715
• • 上一篇
收稿日期:
2024-04-15
出版日期:
2024-07-20
发布日期:
2024-08-13
基金资助:
KE Yi-Hui1,2, PEI Rui1,*(), XU Xing1,3,*()
Received:
2024-04-15
Published:
2024-07-20
Online:
2024-08-13
Contact:
* peirui@ivpp.ac.cn,摘要:
暴龙科是研究最为深入的兽脚类支系之一,发育极端增厚的齿列,可能具有独特的碎骨捕食策略。与进食行为联系紧密的牙齿替换模式在这一类群中得到了广泛的研究,但前人对早期分异的暴龙超科成员却鲜有相应的研究。利用高分辨率CT数据,三维重建了晚侏罗世暴龙超科——五彩冠龙( Guanlong wucaii )两件标本的齿列,为研究暴龙超科的牙齿替换模式提供了新的信息。五彩冠龙幼年个体的下颌齿列发育二代替换齿,这一特征此前仅在包括暴龙科在内的大型猎食性兽脚类恐龙中有报道。Zahnreihen重建显示,五彩冠龙的两个个体在上颌骨齿和齿骨齿中均表现出Z间距大于2.0的从前向后的波状替换模式。五彩冠龙上颌骨齿的Z间距随着个体发育而变大,与在暴龙科成员中观察到的个体发育变化类似。此外,五彩冠龙在前上颌骨-上颌骨交界处显示出了与特暴龙( Tarbosaurus )相似的牙齿替换波的间断,且这种替换波的间断会随着个体发育加剧。这表明,一些与暴龙科类似的牙齿替换模式在暴龙科起源之前就已经产生。
中图分类号:
柯易晖, 裴睿, 徐星. 高分辨率 CT 扫描数据揭示晚侏罗世暴龙类五彩冠龙牙齿替换模式. 古脊椎动物学报, 2024, 62(3): 225-244.
KE Yi-Hui, PEI Rui, XU Xing. High-resolution CT-scan data reveals the tooth replacement pattern of the Late Jurassic tyrannosauroid Guanlong wucaii (Dinosauria, Theropoda). Vertebrata Palasiatica, 2024, 62(3): 225-244.
Fig. 1 3D reconstructions of the upper tooth rows of dentition in IVPP V14531 in lingual view Orange represents functional teeth; green represents replacement teeth; the grey dotted line represents the mid-line of the dental arch. The scale bar equals 1 cm
Fig. 2 3D reconstructions of the upper dentition in IVPP V14532 in lingual views A. the left upper dentition (mirror reversal for comparison); B. the right upper dentition Pink represents functional teeth; cyan represents replacement teeth. The scale bar equals 1 cm
Fig. 3 3D reconstructions of the lower dentition in IVPP V14532 in lingual views A. the left lower dentition (mirror reversal for comparison); B. the right lower dentition Pink represents functional teeth; cyan represents replacement teeth; red represents second-generation replacement teeth. The scale bar equals 1 cm
Fig. 4 The evidence of second-generation replacement teeth in IVPP V14532 A. reconstructions of three tooth generations in Rd4 of V14532 in lingual view, the dotted line indicates the cross sections of B and C; B. the original CT image; C. colors represent different tooth generations T1. the functional tooth (pink); T2. the first-generation replacement tooth (blue); T3. the second-generation replacement tooth (red); The scale bar of A equals 5 mm, and the scale bars of B and C equal 1 mm
Fig. 5 Zahnreihen in the left upper dentition of IVPP V14531 RI. replacement index. Orange represents functional teeth; pink represents replacement teeth; rings represent premaxillary teeth; dots represent maxillary teeth; the grey numbers represent Z-spacing values that were not considered during the separate Zahnreihen reconstruction between the premaxilla and the maxilla; black lines represent Zahnreihen; dotted lines represent Z-spacing
Fig. 6 Zahnreihen in the left upper dentition of IVPP V14532 A. the left side; B. the right side RI. replacement index. Orange represents functional teeth; pink represents replacement teeth; rings represent premaxillary teeth; dots represent maxillary teeth; the grey numbers represent Z-spacing values that were not considered during the separate Zahnreihen reconstruction between the premaxilla and the maxilla; black lines represent Zahnreihen; dotted lines represent Z-spacing
Fig. 7 Zahnreihen in the lower dentition of IVPP V14532 A. the left side; B. the right side RI. replacement index. Orange represents functional teeth; pink represents replacement teeth; cyan represents second-generation replacement teeth; black lines represent Zahnreihen; dotted lines represent Z-spacing
[1] | Abler W L, 1992. The serrated teeth of tyrannosaurid dinosaurs, and biting structures in other animals. Paleobiology, 18: 161-183 |
[2] | Averianov A O, Krasnolutskii S A, Ivantsov S V, 2010. A new basal coelurosaur (Dinosauria: Theropoda) from the Middle Jurassic of Siberia. Proc Zool Inst Russ Acad Sci, 314: 42-57 |
[3] | Bolt J R, DeMar R E, 1986. Computer simulation of tooth replacement with growth in lower tetrapods. J Vert Paleont, 6: 233-250 |
[4] | Brink K S, LeBlanc A R, 2023. How the study of crocodylian teeth influences our understanding of dental development, replacement, and evolution in dinosaurs. In: AraújoR, FernandezV, JohnstonP S eds. Rudling Reptiles:Crocodylian Biology and Archosaur Paleobiology. Bloomington: Indiana University Press. 240-257 |
[5] | Brochu C A, 2003. Osteology of Tyrannosaurus rex : insights from a nearly complete skeleton and high-resolution computed tomographic analysis of the skull. J Vert Paleont, 22: 1-138 |
[6] |
Brusatte S L, Carr T D, 2016. The phylogeny and evolutionary history of tyrannosauroid dinosaurs. Sci Rep, 6: 20252
DOI PMID |
[7] |
Brusatte S L, Norell M A, Carr T D et al., 2010. Tyrannosaur paleobiology: new research on ancient exemplar organisms. Science, 329: 1481-1485
DOI PMID |
[8] | Buckley L G, Larson D W, Reichel M et al., 2010. Quantifying tooth variation within a single population of Albertosaurus sarcophagus (Theropoda: Tyrannosauridae) and implications for identifying isolated teeth of tyrannosaurids. Can J Earth Sci, 47: 1227-1251 |
[9] | Carr T D, 2016. Toward understanding phylogenetic and ontogenetic tooth loss in Archosauria:documenting patterns of tooth replacement in Tyrannosaurus rex . Paper presented at the 76th Annual Meeting of the Society of Vertebrate Paleontology. Utah: Grand America Hotel. 110 |
[10] | Carr T D, 2020. A high-resolution growth series of Tyrannosaurus rex obtained from multiple lines of evidence. PeerJ, 8: e9192 |
[11] | Currie P J, 2003. Cranial anatomy of tyrannosaurid dinosaurs from the Late Cretaceous of Alberta, Canada. Acta Palaeontol Pol, 48: 191-226 |
[12] | Currie P J, Rigby J K, Sloan R E, 1990. Theropod teeth from the Judith River Formation of southern Alberta, Canada. In: CarpenterK, CurrieP J eds. Dinosaur Systematics:Approaches and Perspectives. Cambridge: Cambridge University Press. 107-125 |
[13] | Dalman S G, Loewen M A, Pyron R A et al., 2023. A giant tyrannosaur from the Campanian-Maastrichtian of southern North America and the evolution of tyrannosaurid gigantism. Sci Rep, 13: 22124 |
[14] |
DeMar R, 1972. Evolutionary implications of Zahnreihen. Evolution, 26: 435-450
DOI PMID |
[15] | DeMar R, 1973. The functional implications of the geometrical organization of dentitions. J Vert Paleont, 47: 452-461 |
[16] | DeMar R, Bolt J R, 1981. Dentitional organization and function in a Triassic reptile. J Vert Paleont, 55: 967-984 |
[17] | DePalma II R A, Burnham D A, Martin L D et al., 2013. Physical evidence of predatory behavior in Tyrannosaurus rex . Proc Natl Acad Sci, 110: 12560-12564 |
[18] | Dumont M, Tafforeau P, Bertin T et al., 2016. Synchrotron imaging of dentition provides insights into the biology of Hesperornis and Ichthyornis , the “last” toothed birds. BMC Evol Biol, 16: 178 |
[19] | D’Emic M D, O’Connor P M, Pascucci T R et al., 2019. Evolution of high tooth replacement rates in theropod dinosaurs. PLoS One, 14: e0226897 |
[20] | Edmund A G, 1960. Tooth replacement phenomena in the lower vertebrates. R Ont Mus, 52: 1-190 |
[21] | Edmund A G, 1962. Sequence and rate of tooth replacement in the Crocodilia. R Ont Mus, 56: 1-42 |
[22] | Edmund A G, 1969. Dentition. In: Gans C, Bellairs A A, Parson T S eds.eds. Biology of the Reptilia. London and New York: Academic Press. 117-200 |
[23] | Erickson G M, 1995. Split carinae on tyrannosaurid teeth and implications of their development. J Vert Paleont, 15: 268-274 |
[24] | Erickson G M, 1996. Incremental lines of von Ebner in dinosaurs and the assessment of tooth replacement rates using growth line counts. Proc Natl Acad Sci, 93: 14623-14627 |
[25] | Erickson G M, Olson K H, 1996. Bite marks attributable to Tyrannosaurus rex : preliminary description and implications. J Vert Paleont, 16: 175-178 |
[26] | Erickson G M, Kirk S D V, Su J et al., 1996. Bite-force estimation for Tyrannosaurus rex from tooth-marked bones. Nature, 382: 706-708 |
[27] | Farlow J O, Brinkman D L, 1994. Wear surfaces on the teeth of tyrannosaurs. The Paleontological Society Special Publications. Cambridge: Cambridge University Press. 165-176 |
[28] |
Fastnacht M, 2008. Tooth replacement pattern of Coloborhynchus robustus (Pterosauria) from the Lower Cretaceous of Brazil. J Morphol, 269: 332-348
PMID |
[29] | Fong R K, LeBlanc A R, Berman D S et al., 2016. Dental histology of Coelophysis bauri and the evolution of tooth attachment tissues in early dinosaurs. J Morphol, 277: 916-924 |
[30] | Funston G F, Powers M J, Whitebone S A et al., 2021. Baby tyrannosaurid bones and teeth from the Late Cretaceous of western North America. Can J Earth Sci, 58: 756-777 |
[31] |
Gignac P M, Erickson G M, 2017. The biomechanics behind extreme osteophagy in Tyrannosaurus rex . Sci Rep, 7: 2012
DOI PMID |
[32] | Hanai T, Tsuihiji T, 2018. Description of tooth ontogeny and replacement patterns in a juvenile Tarbosaurus bataar (Dinosauria: Theropoda) using CT-scan data. Anat Rec, 302: 1210-1225 |
[33] | He Y, Makovicky P J, Xu X et al., 2018. High-resolution computed tomographic analysis of tooth replacement pattern of the basal neoceratopsian Liaoceratops yanzigouensis informs ceratopsian dental evolution. Sci Rep, 8: 5870 |
[34] | Hendrickx C, Mateus O, Araújo R, 2015. A proposed terminology of theropod teeth (Dinosauria, Saurischia). J Vert Paleont, 35: e982797 |
[35] | Holtz Jr T R, 2021. Theropod guild structure and the tyrannosaurid niche assimilation hypothesis: implications for predatory dinosaur macroecology and ontogeny in later Late Cretaceous Asiamerical. Can J Earth Sci, 58: 778-795 |
[36] | Hone D W, Watabe M, 2010. New information on scavenging and selective feeding behaviour of tyrannosaurids. Acta Palaeontol Pol, 55: 627-634 |
[37] | Horner J R, Padian K, 2004. Age and growth dynamics of Tyrannosaurus rex . Proc R Soc B, 271: 1875-1880 |
[38] | Hu J, Forster C A, Xu X et al., 2022. Computed tomographic analysis of the dental system of three Jurassic ceratopsians and implications for the evolution of tooth replacement pattern and diet in early-diverging ceratopsians. Elife, 11: e76676 |
[39] | Hurum J R H, Currie P J, 2000. The crushing bite of tyrannosaurids. J Vert Paleont, 20: 619-621 |
[40] | Hurum J R H, Sabath K, 2003. Giant theropod dinosaurs from Asia and North America: skulls of Tarbosaurus bataar and Tyrannosaurus rex compared. Acta Palaeontol Pol, 48: 161-190 |
[41] |
Kellner A W, Azevedo S A, Machado E B et al., 2011. A new dinosaur (Theropoda, Spinosauridae) from the Cretaceous (Cenomanian) Alcântara Formation, Cajual Island, Brazil. An Acad Bras Cienc, 83: 99-108
DOI PMID |
[42] | Kundrát M, Nudds J, Kear B P et al., 2019. The first specimen of Archaeopteryx from the Upper Jurassic Mörnsheim Formation of Germany. Hist Biol, 31: 3-63 |
[43] | Lambe L M, 1917. The Cretaceous theropodus dinosaur Gorgosaurus . Mem Geol Surv Canada, 100: 1-84 |
[44] | Lautenschlager S, Witmer L M, Altangerel P et al., 2014. Cranial anatomy of Erlikosaurus andrewsi (Dinosauria, Therizinosauria): new insights based on digital reconstruction. J Vert Paleont, 34: 1263-1291 |
[45] | Lawson R, Wake D B, Beck N T, 1971. Tooth replacement in the red‐backed salamander, Plethodon cinereus. J Morphol, 134: 259-269 |
[46] | LeBlanc A R, Brink K S, Cullen T M et al., 2017. Evolutionary implications of tooth attachment versus tooth implantation: a case study using dinosaur, crocodilian, and mammal teeth. J Vert Paleont, 37: e1354006 |
[47] | Lu J, 2023. Vayu 1.0, a new set of tools for visualizing surface meshes. Vert PalAsiat, 61: 71-80 |
[48] | Maho T, Reisz R R, 2024. Exceptionally rapid tooth development and ontogenetic changes in the feeding apparatus of the Komodo dragon. PLoS One, 19: e0295002 |
[49] |
Maho T, Maho S, Scott D et al., 2022. Permian hypercarnivore suggests dental complexity among early amniotes. Nat Commun, 13: 4882
DOI PMID |
[50] |
Marshall C R, Latorre D V, Wilson C J et al., 2021. Absolute abundance and preservation rate of Tyrannosaurus rex . Science, 372: 284-287
DOI PMID |
[51] | Meers M B, 2002. Maximum bite force and prey size of Tyrannosaurus rex and their relationships to the inference of feeding behavior. Hist Biol, 16: 1-12 |
[52] | Osborn H F, 1905. Article XIV.- Tyrannosaurus and other Cretaceous carnivorous dinosaurs. Bull Am Mus Nat Hist, 21: 259-265 |
[53] | Osborn H F, Brown B, 1906. Tyrannosaurus, Upper Cretaceous carnivorous dinosaur: second communication. Bull Am Mus Nat Hist, 22: 281-296 |
[54] |
Osborn J W, 1972. On the biological improbability of Zahnreihen as embryological units. Evolution, 26: 601-607
DOI PMID |
[55] |
Osborn J W, 1974. On the control of tooth replacement in reptiles and its relationship to growth. J Theor Biol, 46: 509-527
PMID |
[56] | Osborn J W, 1977. The interpretation of patterns in dentitions. Zool J Linn Soc, 9: 217-229 |
[57] | Owocki K, Kremer B, Cotte M et al., 2020. Diet preferences and climate inferred from oxygen and carbon isotopes of tooth enamel of Tarbosaurus bataar (Nemegt Formation, Upper Cretaceous, Mongolia). Palaeogeogr Palaeoclimatol Palaeoecol, 537: 109190 |
[58] | Paul G S, Persons W S, Van Raalte J, 2022. The tyrant lizard king, queen and emperor: multiple lines of morphological and stratigraphic evidence support subtle evolution and probable speciation within the North American genus Tyrannosaurus . Evol Biol, 49: 156-179 |
[59] | Peterson J E, Tseng Z J, Brink S, 2021. Bite force estimates in juvenile Tyrannosaurus rex based on simulated puncture marks. PeerJ, 9: e11450 |
[60] | Powers M J, Fabbri M, Doschak M R et al., 2021. A new hypothesis of eudromaeosaurian evolution: CT scans assist in testing and constructing morphological characters. J Vert Paleont, 41: e2010087 |
[61] | Rauhut O W, Milner A C, Moore-Fay S, 2010. Cranial osteology and phylogenetic position of the theropod dinosaur Proceratosaurus bradleyi (Woodward, 1910) from the Middle Jurassic of England. Zool J Linn Soc, 158: 155-195 |
[62] | Rayfield E J, 2004. Cranial mechanics and feeding in Tyrannosaurus rex . Proc R Soc B, 271: 1451-1459 |
[63] | Reichel M, 2010. The heterodonty of Albertosaurus sarcophagus and Tyrannosaurus rex : biomechanical implications inferred through 3-D models. Can J Earth Sci, 49: 1253-1261 |
[64] | Reichel M, 2012. The variation of angles between anterior and posterior carinae of tyrannosaurid teeth. Can J Earth Sci, 49: 477-491 |
[65] | Rowe A J, Snively E, 2022. Biomechanics of juvenile tyrannosaurid mandibles and their implications for bite force: evolutionary biology. Anat Rec, 305: 373-392 |
[66] | Sassoon J, Foffa D, Marek R, 2015. Dental ontogeny and replacement in Pliosauridae. R Soc Open Sci, 2: 150384 |
[67] | Sattler F, Schwarz D, 2021. Tooth replacement in a specimen of Tyrannosaurus rex (Dinosauria, Theropoda) from the Hell Creek Formation (Maastrichtian), Montana. Hist Biol, 33: 949-972 |
[68] | Scherer C R, Voiculescu-Holvad C, 2024. Reanalysis of a dataset refutes claims of anagenesis within Tyrannosaurus -line tyrannosaurines (Theropoda, Tyrannosauridae). Cretaceous Res, 155: 105780 |
[69] | Schwarz D, Kosch J C, Fritsch G et al., 2015. Dentition and tooth replacement of Dicraeosaurus hansemanni (Dinosauria, Sauropoda, Diplodocoidea) from the Tendaguru Formation of Tanzania. J Vert Paleont, 35: e1008134 |
[70] | Smith J B, 2005. Heterodonty in Tyrannosaurus rex : implications for the taxonomic and systematic utility of theropod dentitions. J Vert Paleont, 25: 865-887 |
[71] | Therrien F, Zelenitsky D K, Voris J T et al., 2021. Mandibular force profiles and tooth morphology in growth series of Albertosaurus sarcophagus and Gorgosaurus libratus (Tyrannosauridae: Albertosaurinae) provide evidence for an ontogenetic dietary shift in tyrannosaurids. Can J Earth Sci, 58: 812-828 |
[72] | Therrien F, Zelenitsky D K, Tanaka K et al., 2023. Exceptionally preserved stomach contents of a young tyrannosaurid reveal an ontogenetic dietary shift in an iconic extinct predator. Sci Adv, 9: eadi0505 |
[73] | Tsuihiji T, Watabe M, Tsogtbaatar K et al., 2011. Cranial osteology of a juvenile specimen of Tarbosaurus bataar (Theropoda, Tyrannosauridae) from the Nemegt Formation (Upper Cretaceous) of Bugin Tsav, Mongolia. J Vert Paleont, 31: 497-517 |
[74] | Wang Y F, Wei C F, Que J M et al., 2019. Development and applications of paleontological computed tomography. Vert PalAsiat, 57: 84-92 |
[75] | Westergaard B, Ferguson M W J, 1986. Development of the dentition in Alligator mississippiensis : early embryonic development in the lower jaw. J Zool, 210: 575-597 |
[76] | Westergaard B, Ferguson M W J, 1987. Development of the dentition in Alligator mississippiensis : later development in the lower jaws of embryos, hatchlings and young juveniles. J Zool, 212: 191-222 |
[77] | Westergaard B, Ferguson M W J, 1990. Development of the dentition in Alligator mississippiensis : upper jaw dental and craniofacial development in embryos, hatchlings, and young juveniles, with a comparison to lower jaw development. Am J Anat, 187: 393-421 |
[78] | Winkler D E, Iijima M, Blob R W et al., 2022. Controlled feeding experiments with juvenile alligators reveal microscopic dental wear texture patterns associated with hard-object feeding. Front Ecol Evol, 10: 957725 |
[79] | Woodward H N, Tremaine K, Williams S A et al., 2020. Growing up Tyrannosaurus rex : osteohistology refutes the pygmy “ Nanotyrannus ” and supports ontogenetic niche partitioning in juvenile Tyrannosaurus . Sci Adv, 6: eaax6250 |
[80] | Wu Y H, Chiappe L M, Bottjer D J et al., 2021. Dental replacement in Mesozoic birds: evidence from newly discovered Brazilian enantiornithines. Sci Rep, 11: 19349 |
[81] | Xu X, Clark J M, Forster C A et al., 2006. A basal tyrannosauroid dinosaur from the Late Jurassic of China. Nature, 439: 715-718 |
[82] | Xu X, Wang K, Zhang K et al., 2012. A gigantic feathered dinosaur from the Lower Cretaceous of China. Nature, 484: 92-95 |
[83] | Xu X, Clark J M, Eberth D A et al., 2022. The Shishugou Fauna of the Middle‐Late Jurassic transition period in the Junggar Basin of western China. Acta Geol Sin, 96: 1115-1135 |
[1] | 王梦君, 卢静. Drishti Paint 3.2: 一种开源的综合二维与三维分割的新工具. 古脊椎动物学报, 2024, 62(4): 313-320. |
[2] | 朱幼安, 王雅婧, 瞿清明, 卢静, 朱敏. 基于CT数据的副云南鱼腰带部位形态再研究. 古脊椎动物学报, 2023, 61(2): 81-89. |
[3] | 崔心东, 李强, 乔妥, 朱敏. 云南曲靖下泥盆统洛霍考夫阶花鳞鱼类新材料. 古脊椎动物学报, 2020, 58(1): 1-15. |
[4] | 毛方园, 郑晓廷, 王孝理, 王元青, 毕顺东, 孟津. 侏罗纪燕辽生物群贼兽类牙齿发育双出齿和异时发育的证据. 古脊椎动物学报, 2019, 57(1): 51-76. |
[5] | 邢立达,Martin G. LOCKLEY,陈伟,Gerard D. GIERLIŃSKI,李建军,W. Scott PERSONS IV,松川正树,叶勇,Murray K. GINGRAS,王昌文. 重庆晚侏罗世两处兽脚类足迹组合与四川盆地侏罗纪地层. 古脊椎动物学报, 2013, 51(2): 107-130. |
[6] | 贺一鸣,James·Clark, 徐 星. 新疆准噶尔盆地侏罗纪石树沟组上部一大型兽脚类跖骨. 古脊椎动物学报, 2013, 51(1): 29-42. |
[7] | 对比地孝亘,渡部真人,Khishigjav Tsogtbaatar,Rinchen Barsbold, 鈴木茂. 蒙古戈壁上白垩统的暴龙类额骨. 古脊椎动物学报, 2012, 50(2): 102-110. |
[8] | 徐 星 , 詹姆斯•克拉克. 中国西部准噶尔盆地侏罗纪石树沟组的巨型兽脚类恐龙. 古脊椎动物学报, 2008, 46(2): 157-160. |
[9] | 胡耀明 , 孟 津 , 詹姆斯 M.克拉克. 新疆东北部晚侏罗世一新的柱齿兽. 古脊椎动物学报, 2007, 45(3): 173-194. |
[10] | 彭光照, 舒纯康. 四川自贡晚侏罗世西蜀鳄一新种. 古脊椎动物学报, 2005, 43(04): 312-324. |
[11] | 叶 勇, 高玉辉, 江 山. 四川自贡蜥脚类一新属. 古脊椎动物学报, 2005, 43(03): 175-181. |
[12] | 叶 勇, 欧阳辉, 傅乾明. 四川自贡发现合川马门溪龙新材料. 古脊椎动物学报, 2001, 39(04): 266-271. |
[13] | 叶 勇. 四川内江晚侏罗世中国龟科一新属. 古脊椎动物学报, 1999, 37(02): 81-87. |
[14] | 高克勤, 唐治路, 汪筱林. 辽宁晚侏罗世~早白垩世一长颈双弓类爬行动物. 古脊椎动物学报, 1999, 37(01): 1-8. |
[15] | 张法奎, A. W. Crompton, 罗哲西, C. R. Schaff. 中国尖齿兽牙齿替换方式及其对哺乳动物进化的意义. 古脊椎动物学报, 1998, 36(03): 197-217. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||