古脊椎动物学报 ›› 2019, Vol. 57 ›› Issue (1): 38-50.DOI: 10.19615/j.cnki.1000-3118.180307
收稿日期:
2018-01-05
出版日期:
2019-01-20
发布日期:
2019-01-20
作者简介:
zhouyachun@ivpp.ac.cn
基金资助:
ZHOU Ya-Chun1,2, Corwin SULLIVAN3,4, ZHANG Fu-Cheng5,*()
Received:
2018-01-05
Published:
2019-01-20
Online:
2019-01-20
Contact:
*zhangfucheng@ivpp.ac.cn, zhangfucheng@lyu.edu.cn摘要:
牙齿退化是中生代鸟类演化的一个重要过程,牙齿总重综合了牙齿大小和数量的信息,研究这一特征的演化趋势,有助于深入地分析中生代鸟类牙齿退化的原因和方式。然而,现生鸟类均不具齿,无法为研究中生代鸟类的牙齿重量提供参考。除鸟类外的现生脊椎动物中,鳄类与鸟类的亲缘关系最近,且牙齿形态、着生和替换方式与后者相似,因此可为估算中生代鸟类牙齿重量提供参考模型。对从8件现生暹罗鳄标本采得的31枚牙齿进行了形态和重量测量,基于缩放比例原理建立多组回归方程,依此方程对牙齿和齿列保存较完整的中生代鸟类标本进行了牙齿总重估计。结果表明多数中生代鸟类牙齿总重普遍占体重比例极小,据此推测其对飞行的影响可忽略不计,减轻体重的自然选择压力可能不是造成中生代鸟类牙齿退化的主要原因。中生代鸟类牙齿总重的多样性可能反映了其食性和取食行为的差异。
中图分类号:
周亚纯, 舒柯文, 张福成. 中生代鸟类牙齿的退化及其可忽略的体重效应. 古脊椎动物学报, 2019, 57(1): 38-50.
ZHOU Ya-Chun, Corwin SULLIVAN, ZHANG Fu-Cheng. Negligible effect of tooth reduction on body mass in Mesozoic birds. Vertebrata Palasiatica, 2019, 57(1): 38-50.
Taxa | Specimens | Premaxillary teeth | Maxillary teeth | Dentary teeth |
---|---|---|---|---|
Archaeopteryx | London specimen1) | 1 | 3 | 0 |
Berlin specimen1) | 4 | 2 | 2 | |
Jeholornis | IVPP V 13274 | 0 | 0 | 3 |
IVPP V 14978 | 0 | 1 | 0 | |
Sapeornis | IVPP V 13275 | 3 | 1 | 0 |
IVPP V 13276 | 4 | 4 | 0 | |
Longipteryx | IVPP V 12325 | 1 | 0 | 1 |
Longirostravis | IVPP V 11309 | 4 | 0 | 5 |
Pengornis | IVPP V 15336 | 1 | 2 | 1 |
Cathayornis | IVPP V 9769 | 3 | 0 | 2 |
Eoenantiornis | IVPP V 10533 | 4 | 0 | 0 |
Longusunguis | IVPP V 17964 | 3 | 1 | 10 |
Parabohaiornis | IVPP V 18691 | 3 | 4 | 6 |
Bohaiornis | IVPP V 17963 | 4 | 2 | 6 |
Yanornis | IVPP V 12558 | 2 | 3 | 4 |
Tianyuornis | STM 7-53 | 0 | 1 | 1 |
Table 1 Fossil birds and dentition (both sides) measured in this study
Taxa | Specimens | Premaxillary teeth | Maxillary teeth | Dentary teeth |
---|---|---|---|---|
Archaeopteryx | London specimen1) | 1 | 3 | 0 |
Berlin specimen1) | 4 | 2 | 2 | |
Jeholornis | IVPP V 13274 | 0 | 0 | 3 |
IVPP V 14978 | 0 | 1 | 0 | |
Sapeornis | IVPP V 13275 | 3 | 1 | 0 |
IVPP V 13276 | 4 | 4 | 0 | |
Longipteryx | IVPP V 12325 | 1 | 0 | 1 |
Longirostravis | IVPP V 11309 | 4 | 0 | 5 |
Pengornis | IVPP V 15336 | 1 | 2 | 1 |
Cathayornis | IVPP V 9769 | 3 | 0 | 2 |
Eoenantiornis | IVPP V 10533 | 4 | 0 | 0 |
Longusunguis | IVPP V 17964 | 3 | 1 | 10 |
Parabohaiornis | IVPP V 18691 | 3 | 4 | 6 |
Bohaiornis | IVPP V 17963 | 4 | 2 | 6 |
Yanornis | IVPP V 12558 | 2 | 3 | 4 |
Tianyuornis | STM 7-53 | 0 | 1 | 1 |
Fig. 1 Linear measurements applied to bird and crocodilian teeth in this study A. isolated left premaxillary tooth of Archaeopteryx lithographica (London specimen; modified from Wellnhofer, 2009); B. isolated posterior tooth of Crocodylus siamensis (IVPP uncatalogued specimen). Dotted line: measurement line, solid line: indication line Abbreviations: CH. crown height; FABL. fore-aft base length; FACL. fore-aft crown length; FARL. fore-aft root length; TH. tooth height. Scale bars = 1 mm
Model | R2 | intercept | slope | p-value | ||
---|---|---|---|---|---|---|
M-CH | 0.423 | 1.081 | 1.483 | 0.000 | ||
M-TH | 0.822 | -0.276 | 2.180 | 0.000 | ||
M-FACL | 0.595 | 0.693 | 2.366 | 0.000 | ||
M-FABL | 0.636 | 0.913 | 2.278 | 0.000 | ||
M-FARL | 0.649 | 0.522 | 2.168 | 0.000 | ||
M-(TH & FARL) | 0.887 | -0.346 | 1.606 (TH) | 0.940 (FARL) | 0.000 (TH) | 0.000 (FARL) |
M-(CH & TH) | 0.855 | -0.463 | -0.749 (CH) | 2.836 (TH) | 0.017 (CH) | 0.000 (TH) |
M-(TH & FABL) | 0.850 | -0.153 | 1.710 (TH) | 0.735 (FABL) | 0.000 (TH) | 0.030 (FABL) |
M-(TH & FACL) | 0.838 | -0.249 | 1.821 (TH) | 0.603 (FACL) | 0.000 (TH) | 0.103 (FACL) |
M-(FABL & FARL) | 0.703 | 0.571 | 1.187 (FABL) | 1.243 (FARL) | 0.031 (FABL) | 0.018 (FARL) |
M-(CH & FARL) | 0.699 | 0.389 | 0.628 (CH) | 1.738 (FARL) | 0.039 (CH) | 0.000 (FARL) |
M-(FACL & FARL) | 0.671 | 0.425 | 1.080 (FACL) | 1.409 (FARL) | 0.054 (FACL) | 0.006 (FARL) |
M-(CH & FABL) | 0.636 | 0.904 | 0.50 (CH) | 2.227 (FABL) | 0.910 (CH) | 0.000 (FACL) |
M-(FACL & FABL) | 0.636 | 0.883 | 0.229 (FACL) | 2.074 (FABL) | 0.854 (FACL) | 0.084 (FABL) |
M-(CH & FACL) | 0.596 | 0.686 | 0.148 (CH) | 2.204 (FACL) | 0.757 (CH) | 0.002 (FACL) |
Table 2 Regression results for Crocodylus siamensis tooth data
Model | R2 | intercept | slope | p-value | ||
---|---|---|---|---|---|---|
M-CH | 0.423 | 1.081 | 1.483 | 0.000 | ||
M-TH | 0.822 | -0.276 | 2.180 | 0.000 | ||
M-FACL | 0.595 | 0.693 | 2.366 | 0.000 | ||
M-FABL | 0.636 | 0.913 | 2.278 | 0.000 | ||
M-FARL | 0.649 | 0.522 | 2.168 | 0.000 | ||
M-(TH & FARL) | 0.887 | -0.346 | 1.606 (TH) | 0.940 (FARL) | 0.000 (TH) | 0.000 (FARL) |
M-(CH & TH) | 0.855 | -0.463 | -0.749 (CH) | 2.836 (TH) | 0.017 (CH) | 0.000 (TH) |
M-(TH & FABL) | 0.850 | -0.153 | 1.710 (TH) | 0.735 (FABL) | 0.000 (TH) | 0.030 (FABL) |
M-(TH & FACL) | 0.838 | -0.249 | 1.821 (TH) | 0.603 (FACL) | 0.000 (TH) | 0.103 (FACL) |
M-(FABL & FARL) | 0.703 | 0.571 | 1.187 (FABL) | 1.243 (FARL) | 0.031 (FABL) | 0.018 (FARL) |
M-(CH & FARL) | 0.699 | 0.389 | 0.628 (CH) | 1.738 (FARL) | 0.039 (CH) | 0.000 (FARL) |
M-(FACL & FARL) | 0.671 | 0.425 | 1.080 (FACL) | 1.409 (FARL) | 0.054 (FACL) | 0.006 (FARL) |
M-(CH & FABL) | 0.636 | 0.904 | 0.50 (CH) | 2.227 (FABL) | 0.910 (CH) | 0.000 (FACL) |
M-(FACL & FABL) | 0.636 | 0.883 | 0.229 (FACL) | 2.074 (FABL) | 0.854 (FACL) | 0.084 (FABL) |
M-(CH & FACL) | 0.596 | 0.686 | 0.148 (CH) | 2.204 (FACL) | 0.757 (CH) | 0.002 (FACL) |
Model | R2 | Log10Mass |
---|---|---|
M-(TH & FARL) | 0.887 | -0.346+1.606log10TH+0.940log10FARL |
M-TH | 0.822 | -0.276+2.180log10TH |
M-FARL | 0.649 | 0.522+2.168log10FARL |
M-FABL | 0.636 | 0.913+2.278log10FABL |
Table 3 Four least-squares regression models used to generate tooth mass estimates for Mesozoic birds
Model | R2 | Log10Mass |
---|---|---|
M-(TH & FARL) | 0.887 | -0.346+1.606log10TH+0.940log10FARL |
M-TH | 0.822 | -0.276+2.180log10TH |
M-FARL | 0.649 | 0.522+2.168log10FARL |
M-FABL | 0.636 | 0.913+2.278log10FABL |
Taxa | Model | Teeth | STM (mg) | ASTM (mg) | Teeth (EN) | ATTM (mg) |
---|---|---|---|---|---|---|
Archaeopteryx London specimen | M-(TH & FARL) | I-PMT (1) | 2.082 | 2.082 | 50 | 106.182 |
M-TH | I-PMT (1) | 4.667 | 4.667 | 50 | 238.527 | |
M-FARL | I-PMT (1) | 2.803 | 2.083 | 50 | 142.953 | |
M-FABL | I-PMT (1) | 1.845 | 3.091 | 50 | 157.679 | |
MT (3) | 3.457 3.550 3.515 |
Table 4 Average total tooth mass (ATTM) estimates for the London Archaeopteryx (London specimen) based on different regression equations
Taxa | Model | Teeth | STM (mg) | ASTM (mg) | Teeth (EN) | ATTM (mg) |
---|---|---|---|---|---|---|
Archaeopteryx London specimen | M-(TH & FARL) | I-PMT (1) | 2.082 | 2.082 | 50 | 106.182 |
M-TH | I-PMT (1) | 4.667 | 4.667 | 50 | 238.527 | |
M-FARL | I-PMT (1) | 2.803 | 2.083 | 50 | 142.953 | |
M-FABL | I-PMT (1) | 1.845 | 3.091 | 50 | 157.679 | |
MT (3) | 3.457 3.550 3.515 |
Taxa | Specimens | ATTM (mg) | Body Mass (g) M-HumL | |||
---|---|---|---|---|---|---|
M-(TH & FARL) | M-TH | M-FARL | M-FABL | |||
Archaeopteryx | London specimen | 106.182 | 238.527 | 142.953 | 157.679 | 307.000 |
Berlin specimen | 143.521 | 227.000 | ||||
Jeholornis | IVPP V 13274 | 6.462 | 597.400 | |||
IVPP V 14978 | 10.826 | 285.400 | ||||
Sapeornis | IVPP V 13275 | 80.496 | 70.148 | 680.600 | ||
IVPP V 13276 | 111.254 | 141.115 | 712.900 | |||
Eoenantiornis | IVPP V 10533 | 6.028 | 14.344 | 16.280 | 30.602 | 60.900 |
Cathayornis | IVPP V 9769 | 10.208 | 52.285 | |||
Pengornis | IVPP V 15336 | 25.200 | 64.568 | 49.392 | 74.270 | 235.200 |
Longipteryx | IVPP V 12325 | 47.976 | 67.956 | 109.392 | 60.132 | 126.700 |
Longirostravis | IVPP V 11309 | 0.406 | 2.016 | 0.980 | 1.052 | 42.600 |
Longusunguis | IVPP V 17964 | 37.336 | 58.872 | 50.016 | 64.680 | 104.627 |
Bohaiornis | IVPP V 17963 | 59.883 | 179.886 | 54.705 | 144.550 | 153.636 |
Parabohaiornis | IVPP V 18691 | 39.004 | 134.279 | 37.716 | 78.413 | 135.081 |
Yanornis | IVPP V 12558 | 98.753 | 186.388 | 284.920 | 284.838 | 336.000 |
Tianyuornis | STM 7-53 | 7.775 | 22.971 | 14.664 | 17.602 | 43.545 |
Table 5 Average total teeth mass (ATTM) values calculated for Mesozoic birds using four alternative regression models
Taxa | Specimens | ATTM (mg) | Body Mass (g) M-HumL | |||
---|---|---|---|---|---|---|
M-(TH & FARL) | M-TH | M-FARL | M-FABL | |||
Archaeopteryx | London specimen | 106.182 | 238.527 | 142.953 | 157.679 | 307.000 |
Berlin specimen | 143.521 | 227.000 | ||||
Jeholornis | IVPP V 13274 | 6.462 | 597.400 | |||
IVPP V 14978 | 10.826 | 285.400 | ||||
Sapeornis | IVPP V 13275 | 80.496 | 70.148 | 680.600 | ||
IVPP V 13276 | 111.254 | 141.115 | 712.900 | |||
Eoenantiornis | IVPP V 10533 | 6.028 | 14.344 | 16.280 | 30.602 | 60.900 |
Cathayornis | IVPP V 9769 | 10.208 | 52.285 | |||
Pengornis | IVPP V 15336 | 25.200 | 64.568 | 49.392 | 74.270 | 235.200 |
Longipteryx | IVPP V 12325 | 47.976 | 67.956 | 109.392 | 60.132 | 126.700 |
Longirostravis | IVPP V 11309 | 0.406 | 2.016 | 0.980 | 1.052 | 42.600 |
Longusunguis | IVPP V 17964 | 37.336 | 58.872 | 50.016 | 64.680 | 104.627 |
Bohaiornis | IVPP V 17963 | 59.883 | 179.886 | 54.705 | 144.550 | 153.636 |
Parabohaiornis | IVPP V 18691 | 39.004 | 134.279 | 37.716 | 78.413 | 135.081 |
Yanornis | IVPP V 12558 | 98.753 | 186.388 | 284.920 | 284.838 | 336.000 |
Tianyuornis | STM 7-53 | 7.775 | 22.971 | 14.664 | 17.602 | 43.545 |
Taxa | Specimens | R-ATTM | |||
---|---|---|---|---|---|
M-(TH & FARL) | M-TH | M-FARL | M-FABL | ||
Archaeopteryx | London specimen | 0.346 | 0.777 | 0.466 | 0.514 |
Berlin specimen | 0.632 | ||||
Jeholornis | IVPP V 13274 | 0.011 | |||
IVPP V 14978 | 0.038 | ||||
Sapeornis | IVPP V 13275 | 0.118 | 0.103 | ||
IVPP V 13276 | 0.156 | 0.198 | |||
Eoenantiornis | IVPP V 10533 | 0.27 | 0.236 | 0.267 | 0.502 |
Cathayornis | IVPP V 9769 | 0.195 | |||
Pengornis | IVPP V 15336 | 0.107 | 0.275 | 0.210 | 0.316 |
Longipteryx | IVPP V 12325 | 0.379 | 0.536 | 0.863 | 0.475 |
Longirostravis | IVPP V 11309 | 0.010 | 0.047 | 0.023 | 0.025 |
Longusunguis | IVPP V 17964 | 0.261 | 0.563 | 0.478 | 0.618 |
Bohaiornis | IVPP V 17963 | 0.390 | 1.171 | 0.356 | 0.941 |
Parabohaiornis | IVPP V 18691 | 0.289 | 0.994 | 0.405 | 0.580 |
Yanornis | IVPP V 12558 | 0.294 | 0.555 | 0.848 | 0.848 |
Tianyuornis | STM 7-53 | 0.179 | 0.528 | 0.337 | 0.404 |
Table 6 Relative average total tooth mass (R-ATTM) values (‰) calculated for Mesozoic birds using different regression models
Taxa | Specimens | R-ATTM | |||
---|---|---|---|---|---|
M-(TH & FARL) | M-TH | M-FARL | M-FABL | ||
Archaeopteryx | London specimen | 0.346 | 0.777 | 0.466 | 0.514 |
Berlin specimen | 0.632 | ||||
Jeholornis | IVPP V 13274 | 0.011 | |||
IVPP V 14978 | 0.038 | ||||
Sapeornis | IVPP V 13275 | 0.118 | 0.103 | ||
IVPP V 13276 | 0.156 | 0.198 | |||
Eoenantiornis | IVPP V 10533 | 0.27 | 0.236 | 0.267 | 0.502 |
Cathayornis | IVPP V 9769 | 0.195 | |||
Pengornis | IVPP V 15336 | 0.107 | 0.275 | 0.210 | 0.316 |
Longipteryx | IVPP V 12325 | 0.379 | 0.536 | 0.863 | 0.475 |
Longirostravis | IVPP V 11309 | 0.010 | 0.047 | 0.023 | 0.025 |
Longusunguis | IVPP V 17964 | 0.261 | 0.563 | 0.478 | 0.618 |
Bohaiornis | IVPP V 17963 | 0.390 | 1.171 | 0.356 | 0.941 |
Parabohaiornis | IVPP V 18691 | 0.289 | 0.994 | 0.405 | 0.580 |
Yanornis | IVPP V 12558 | 0.294 | 0.555 | 0.848 | 0.848 |
Tianyuornis | STM 7-53 | 0.179 | 0.528 | 0.337 | 0.404 |
1 |
Anderson J F, Hall-Martin A, Russell D A , 1985. Long-bone circumference and mass in mammals, birds and dinosaurs. J Zool, 207:53-61
DOI URL |
2 |
Bakker R T , 1972. Anatomical and ecological evidence of endothermy in dinosaurs. Nature, 238:81-85
DOI URL |
3 | Brusatte S L, O’Connor J K, Jarvis E D , 2015. The origin and diversification of birds. Curr Biol, 25:888-898 |
4 |
Campione N E, Evans D C , 2012. A universal scaling relationship between body mass and proximal limb bone dimensions in quadrupedal terrestrial tetrapods. BMC Biol, 10:60
DOI PMID |
5 |
Campione N E, Evans D C, Brown CM et al., 2014. Body mass estimation in non‐avian bipeds using a theoretical conversion to quadruped stylopodial proportions. Methods Ecol Evol, 5(9):913-923
DOI URL |
6 |
Christiansen P, Fariña R A , 2004. Mass prediction in theropod dinosaurs. Hist Biol, 16:85-92
DOI URL |
7 |
Davit-Béal T, Tucker A S, Sire J Y , 2009. Loss of teeth and enamel in tetrapods: fossil record, genetic data and morphological adaptations. J Anat, 214:477-501
DOI URL |
8 |
Dilger W C , 1957. The loss of teeth in birds. The Auk, 74:103-104
DOI URL |
9 |
Erickson G M, Lappin A K, Vliet K A , 2003. The ontogeny of bite-force performance in American alligator (Alligator mississippiensis). J Zool, 260:317-327
DOI URL |
10 | Feduccia A , 1999. The Origin and Evolution of Birds. 2nd ed. New Haven: Yale University Press. 1-466 |
11 |
Green R E, Braun E L, Armstrong J et al., 2014. Three crocodilian genomes reveal ancestral patterns of evolution among archosaurs. Science, 346:1254449
DOI URL |
12 |
Gregory J T , 1951. Convergent evolution: the jaws of Hesperornis and the Mosasaurs. Evolution, 5(4):345-354
DOI URL |
13 |
Hou L H, Chiappe L M, Zhang F C et al., 2004. New Early Cretaceous fossil from China documents a novel trophic specialization for Mesozoic birds. Naturwissenschaften, 91(1):22-25
DOI URL |
14 |
Li Z H, Zhou Z H, Wang M et al., 2014. A new specimen of large-bodied basal enantiornithine Bohaiornis from the Early Cretaceous of China and the inference of feeding ecology in Mesozoic birds. J Paleontol, 88(1):99-108
DOI URL |
15 | Liu D, Zhou Z H, Zhang Y G , 2012. Mass estimate and evolutionary trend in Chinese Mesozoic fossil birds. Vert PalAsiat, 50(1):39-52 |
16 |
Louchart A, Viriot L , 2011. From snout to beak: the loss of teeth in birds. Trends Ecol Evol, 26(12):663-673
DOI URL |
17 | Marsh O C , 1880. Odontornithes: a Monograph on the Extinct Toothed Birds of North America. Washington: Government Printing Office. 1-384 |
18 | Martin L, Stewart J, Whetstone K , 1980. The origin of birds: structure of the tarsus and teeth. The Auk, 97:86-93 |
19 | O’Connor J K, Zhou Z H , 2015. Early evolution of the biological bird: perspectives from new fossil discoveries in China. J Ornithol, 156(1):333-342 |
20 |
O’Connor J K, Sun C, Xu X et al., 2012. A new species of Jeholornis with complete caudal integument. Hist Biol, 24:29-41
DOI URL |
21 |
Pennycuick C J , 1989. Climbing performance of Harris’ Hawks (Parabuteo unicinctus) with added load: implications for muscle mechanics and for radiotracking. J Exp Biol, 142:17-29
DOI URL |
22 | Pennycuick C J , 2008. Modelling the Flying Bird. London: Academic Press of Elsevier. 1-480 |
23 | Proctor N S, Lynch P J , 1998. Manual of Ornithology: Avian Structure & Function. New Haven: Yale University Press. 1-340 |
24 | Rink W J, Hunter V A , 1997. Densities of modern and fossil dental tissues: significance to ESR dating of tooth enamel. Ancient TL, 15(1):20-27 |
25 |
Videler J J, Vossebelt G, Gnodde M et al., 1988a. Indoor flight experiments with trained kestrels I. Flight strategies in still air with and without added weight. J Exp Biol, 134:173-183
DOI URL |
26 |
Videler J J, Groenewegen A, Gnodde M et al., 1988b. Indoor flight experiments with trained kestrels II. The effect of added weight on flapping flight kinematics. J Exp Biol, 134:185-199
DOI URL |
27 | Wang M, Zhou Z H, O’Connor J K et al., 2014. A new diverse enantiornithine family (Bohaiornithidae fam. nov.) from the Lower Cretaceous of China with information from two new species. Vert PalAsiat, 52(1):31-76 |
28 |
Wang S, Stiegler J, Wu P et al., 2017. Heterochronic truncation of odontogenesis in theropod dinosaurs provides insight into the macroevolution of avian beaks. Proc Natl Acad Sci USA, 114:10930-10935
DOI URL |
29 | Wellnhofer P , 2009. Archaeopteryx: The Icon of Evolution. München: Verlag Dr. Friedrich Pfeil. 1-208 |
30 | Wings O, Sander P M , 2007. No gastric mill in sauropod dinosaurs: new evidence from analysis of gastrolith mass and function in ostriches. Proc R Soc Lond B, 274:635-640 |
31 |
Yosef R , 1993. Prey transport by loggerhead shrikes. The Condor, 95(1):231-233
DOI URL |
32 | Zheng G M , 1995. Ornithology. Beijing: Beijing Normal University Press. 1-583 |
33 |
Zheng X T, Martin L D, Zhou Z H et al., 2011. Fossil evidence of avian crops from the Early Cretaceous of China. Proc Natl Acad Sci USA, 108:15904-15907
DOI URL |
34 |
Zheng X T, O’Connor J K, Huchzermeyer F et al., 2014a. New specimens of Yanornis indicate a piscivorous diet and modern alimentary canal. PloS One, 9(4):e95036
DOI URL |
35 |
Zheng X T, O’Connor J K, Wang X L et al., 2014b. On the absence of sternal elements in Anchiornis (Paraves) and Sapeornis (Aves) and the complex early evolution of the avian sternum. Proc Natl Acad Sci USA, 111:13900-13905
DOI URL |
36 | Zhou Z H, Zhang F C , 2001. Two new ornithurine birds from the Early Cretaceous of western Liaoning, China. Chin Sci Bull, 46:1258-1264 |
37 |
Zhou Z H, Zhang F C , 2003. Anatomy of the primitive bird Sapeornis chaoyangensis from the Early Cretaceous of Liaoning, China. Can J Earth Sci, 40:731-747
DOI URL |
38 |
Zhou Z H, Zhang F C , 2006. A beaked basal ornithurine bird (Aves, Ornithurae) from the Lower Cretaceous of China. Zool Scr, 35:363-373
DOI URL |
39 |
Zhou Z H, Clarke J, Zhang F C et al., 2004. Gastroliths in Yanornis: an indication of the earliest radical diet-switching and gizzard plasticity in the lineage leading to living birds? Naturwissenschaften, 91:571-574
DOI URL |
40 | Zhou Z H, Li Z H, Zhang F C , 2009. A new Lower Cretaceous bird from China and tooth reduction in early avian evolution. Proc Biol Sci, 277:219-227 |
[1] | 刘迪,周忠和,张玉光. 中国中生代鸟类的体重估计及其演化趋势. 古脊椎动物学报, 2012, 50(1): 39-52. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||