古脊椎动物学报 ›› 2020, Vol. 58 ›› Issue (1): 45-66.DOI: 10.19615/j.cnki.1000-3118.190724
楠桥直1(), 王元青2,3,4,*(), 李传夔2, 金迅2
收稿日期:
2019-01-07
出版日期:
2020-01-20
发布日期:
2020-01-20
作者简介:
nkusu@sci.ehime-u.ac.jp
基金资助:
KUSUHASHI Nao1(), WANG Yuan-Qing2,3,4,*(), LI Chuan-Kui2, JIN Xun2
Received:
2019-01-07
Published:
2020-01-20
Online:
2020-01-20
Contact:
*wangyuanqing@ivpp.ac.cn摘要:
真三尖齿兽类是了解亚洲白垩纪哺乳动物群演化和转变的重要成员之一。到目前为止沙海组和阜新组(下白垩统上部)已经发现了两种戈壁尖齿兽科以及两种三尖齿兽科的真三尖齿兽类。描述了这些地层产出的真三尖齿兽类的其他材料,包括一新属新种——常氏阜新尖齿兽(Fuxinoconodon changi gen. et sp. nov.)和一枚左下臼齿(鉴定为 ?Gobiconodontidae gen. et sp. indet.)。这种新的真三尖齿兽类被归入戈壁尖齿兽科(Gobiconodontidae), 其特征为:第一下门齿大、门齿和前臼齿的数目变少、臼齿b尖和c尖较大而独立,以及臼齿具有分别属于Gobiconodon第一代或第二代臼齿上独有特征的组合。新材料与同一地区相同层位已经报道的4种真三尖齿兽类表明,虽然科级和属级的多样性似乎已经减少,但亚洲早白垩世晚期仍存在比较多样的真三尖齿兽类。
中图分类号:
楠桥直, 王元青, 李传夔, 金迅. 辽宁下白垩统沙海组和阜新组真三尖齿兽类戈壁尖齿兽科新材料. 古脊椎动物学报, 2020, 58(1): 45-66.
KUSUHASHI Nao, WANG Yuan-Qing, LI Chuan-Kui, JIN Xun. New gobiconodontid (Eutriconodonta, Mammalia) from the Lower Cretaceous Shahai and Fuxin formations, Liaoning, China. Vertebrata Palasiatica, 2020, 58(1): 45-66.
Fig. 1 Map showing the locations of Badaohao and Fuxin where the fossils were collected (A) and schematic stratigraphic table of the major late Mesozoic strata in western Liaoning Province (B) Adopted from Wang et al. (1989), Yang and Li (1997), and Li and Matsuoka (2015) among others++Abbreviations: Alb. Albian; Apt. Aptian; Barr. Barremian; Berr. Berriasian; Fm. Formation; Gp. Group; Haut. Hauterivian; Val. Valanginian
Fig. 2 Scanning electron micrographs of the holotype (IVPP V 14511) of Fuxinoconodon changi gen. et sp. nov., a partial right dentary with broken dc, c, m1-m4, alveoli for i1-i2 and p1-p3, from Lower Cretaceous Fuxin Formation, Fuxin, Liaoning, northeastern China A. labial view; B. lingual view; C. occlusal view, stereopair, left to anterior++Small arrows in A indicate the position of the transverse section in Fig. 4B
Fig. 3 Scanning electron micrographs of the m1-m4 of the holotype (IVPP V 14511) of Fuxinoconodon changi gen. et sp. nov. from Lower Cretaceous Fuxin Formation, Fuxin, Liaoning, northeastern China A. labial view; B. lingual view; C. occlusal view, stereopair, left to anterior
Fig. 4 Holotype (IVPP V 14511) of Fuxinoconodon changi gen. et sp. nov. from Lower Cretaceous Fuxin Formation, Fuxin, Liaoning, northeastern China A. a photograph (A1) and an interpretive sketch (A2) of the anterior part of the dentary, the hatched area on the canine is broken; B. reconstructed micro-computed tomography images showing the laterally compressed alveoli for i1 and i2 in a transverse section at the position indicated in Fig. 2A, left to labial; C. a scanning electron micrograph of the m1 in mesiolabial view. Abbreviations: c. canine; dc. deciduous canine; i. incisor; m. molariform; mf. mental foramen; p. premolariform
m1 | m2 | m3 | m4 | m5 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
L | W | H | L | W | H | L | W | H | L | W | H | L | W | H | |
Fuxinoconodon changi | |||||||||||||||
IVPP V 14511 | 3.23* | 1.13 | 2.00 | 2.99* | 1.14 | - | 3.40 | 1.15 | - | 2.87* | 1.08 | 2.16 | - | - | - |
Gobiconodontidae gen. et sp. indet. | 2.55 | 0.80 | 2.04 | ||||||||||||
IVPP V 22643* | |||||||||||||||
Gobiconodon haizhouensis | |||||||||||||||
IVPP V 14509 | 1.72 | 0.94 | 1.85 | 1.81 | 0.97 | 1.85 | 1.66 | 0.94 | 1.88 | 1.50 | 0.88 | 1.50 | 1.22 | 0.75 | 1.22 |
Gobiconodon tomidai | |||||||||||||||
IVPP V 14510 | - | - | - | 1.99 | 0.78 | 1.44 | 2.07 | 0.86 | - | 2.00 | 0.79 | - | - | 0.72 | - |
Gobiconodon borissiaki | |||||||||||||||
PIN 3101/9 | 2.8 | 1.3 | - | - | 1.3 | - | 2.75 | 1.5 | - | 2.7 | 1.5 | - | 2.5 | 1.15 | - |
Gobiconodon hoburensis | |||||||||||||||
PIN 3101/24 | 1.5 | 0.9 | - | 1.6 | 0.9 | - | 1.6 | 0.95 | - | 1.45 | 0.85 | - | 1.4 | 0.65 | - |
Gobiconodon luoianus (41H III-0320) | |||||||||||||||
right | 3.0 | 3.5 | - | ||||||||||||
left | 3.0 | 2.8 | - | 3.0 | 3.2 | - | |||||||||
Gobiconodon ostromi (MCZ 19965) | |||||||||||||||
right | 4.75 | 2.10 | - | - | - | - | 4.90 | 2.25 | - | 4.60 | 2.40 | 4.60 | 4.05 | 2.30 | 3.70 |
left | 4.50 | 2.20 | 4.55 | 4.80 | - | - | 4.85 | 2.75 | - | - | 2.55 | - | - | 2.30 | - |
Gobiconodon zofiae | |||||||||||||||
IVPP V 12585 | 2.30 | 0.90 | - | 2.30 | 0.95 | - | 2.50 | 1.05 | - | 2.55 | 1.00 | - | 1.95 | 0.75 | - |
Meemannodon lujiatunensis | |||||||||||||||
IVPP V 13102 | 5.33 | 2.90 | 4.78 | 6.95 | 3.30 | 6.08 | 7.62 | 3.56 | 6.98 | 7.43 | 3.69 | 7.28 | - | - | - |
Repenomamus giganticus | |||||||||||||||
IVPP V 14155 | 7.5 | 4.7 | - | 8.3 | 5.0 | - | 8.0 | - | - | 7.5 | 4.8 | - | 6.1 | 4.2 | - |
Spinolestes xenarthrosus | |||||||||||||||
MCCMLH30000 | 2.06 | 1.14 | - | 1.77 | 1.04 | - |
Table 1 Measurements of lower molariforms in the holotype (IVPP V 14511) of Fuxinoconodon changi gen. et sp. nov. and ?Gobiconodontidae gen. et sp. indet. (V 22643) with those of type specimens of other gobiconodontids (mm)
m1 | m2 | m3 | m4 | m5 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
L | W | H | L | W | H | L | W | H | L | W | H | L | W | H | |
Fuxinoconodon changi | |||||||||||||||
IVPP V 14511 | 3.23* | 1.13 | 2.00 | 2.99* | 1.14 | - | 3.40 | 1.15 | - | 2.87* | 1.08 | 2.16 | - | - | - |
Gobiconodontidae gen. et sp. indet. | 2.55 | 0.80 | 2.04 | ||||||||||||
IVPP V 22643* | |||||||||||||||
Gobiconodon haizhouensis | |||||||||||||||
IVPP V 14509 | 1.72 | 0.94 | 1.85 | 1.81 | 0.97 | 1.85 | 1.66 | 0.94 | 1.88 | 1.50 | 0.88 | 1.50 | 1.22 | 0.75 | 1.22 |
Gobiconodon tomidai | |||||||||||||||
IVPP V 14510 | - | - | - | 1.99 | 0.78 | 1.44 | 2.07 | 0.86 | - | 2.00 | 0.79 | - | - | 0.72 | - |
Gobiconodon borissiaki | |||||||||||||||
PIN 3101/9 | 2.8 | 1.3 | - | - | 1.3 | - | 2.75 | 1.5 | - | 2.7 | 1.5 | - | 2.5 | 1.15 | - |
Gobiconodon hoburensis | |||||||||||||||
PIN 3101/24 | 1.5 | 0.9 | - | 1.6 | 0.9 | - | 1.6 | 0.95 | - | 1.45 | 0.85 | - | 1.4 | 0.65 | - |
Gobiconodon luoianus (41H III-0320) | |||||||||||||||
right | 3.0 | 3.5 | - | ||||||||||||
left | 3.0 | 2.8 | - | 3.0 | 3.2 | - | |||||||||
Gobiconodon ostromi (MCZ 19965) | |||||||||||||||
right | 4.75 | 2.10 | - | - | - | - | 4.90 | 2.25 | - | 4.60 | 2.40 | 4.60 | 4.05 | 2.30 | 3.70 |
left | 4.50 | 2.20 | 4.55 | 4.80 | - | - | 4.85 | 2.75 | - | - | 2.55 | - | - | 2.30 | - |
Gobiconodon zofiae | |||||||||||||||
IVPP V 12585 | 2.30 | 0.90 | - | 2.30 | 0.95 | - | 2.50 | 1.05 | - | 2.55 | 1.00 | - | 1.95 | 0.75 | - |
Meemannodon lujiatunensis | |||||||||||||||
IVPP V 13102 | 5.33 | 2.90 | 4.78 | 6.95 | 3.30 | 6.08 | 7.62 | 3.56 | 6.98 | 7.43 | 3.69 | 7.28 | - | - | - |
Repenomamus giganticus | |||||||||||||||
IVPP V 14155 | 7.5 | 4.7 | - | 8.3 | 5.0 | - | 8.0 | - | - | 7.5 | 4.8 | - | 6.1 | 4.2 | - |
Spinolestes xenarthrosus | |||||||||||||||
MCCMLH30000 | 2.06 | 1.14 | - | 1.77 | 1.04 | - |
Fig. 5 The molariform of ?Gobiconodontidae gen. et sp. indet. (IVPP V 22643) from Lower Cretaceous Shahai Formation, Badaohao, Heishan, Liaoning, northeastern China A-C. Scanning electron micrographs: A. labial view, B. lingual view, C. occlusal view, stereopair, top to anterior; D. V 22643 reconstructed from micro-computed tomography images of V 14511 using AMIRA 5.3.2 software in mesiolingual view
[1] | Averianov A O, Skutschas P P, Lopatin A V et al., 2005. Early Cretaceous mammals from Bol’shoi Kemchug 3 locality in West Siberia, Russia. Russ J Theriol, 4(1):1-12 |
[2] | Bi S D, Zheng X T, Wang X L et al., 2018. An Early Cretaceous eutherian and the placental-marsupial dichotomy. Nature, 558:390-395 |
[3] | Bonaparte J F, 1986. Sobre Mesungulatum houssayi y nuevos mamíferos cretácicos de Patagonia. Actas IV Congr Argent Paleont Bioestratigr, 2:48-61 |
[4] | Bonaparte J F, 1992. Una nueva especie de Triconodonta (Mammalia), de la Formación Los Alamitos, Provincia de Río Negro y comentarios sobre su fauna de mamíferos. Ameghiniana, 29(2):99-110 |
[5] | Butler P M, Sigogneau-Russell D, 2016. Diversity of triconodonts in the Middle Jurassic of Great Britain. Palaeont Pol, 67:35-65 |
[6] | Chow M C, Rich T H V, 1984. A new triconodontan (Mammalia) from the Jurassic of China. J Vert Paleont, 3(4):226-231 |
[7] | Crompton A W, Jenkins F A Jr, 1968. Molar occlusion in Late Triassic mammals. Biol Rev, 43(4):427-458 |
[8] | Gaetano L C, Rougier G W, 2011. New materials of Argentoconodon fariasorum (Mammaliaformes, Triconodontidae) from the Jurassic of Argentina and its bearing on triconodont phylogeny. J Vert Paleont, 31(4):829-843 |
[9] | Gaetano L C, Rougier G W, 2012. First amphilestid from South America: a molariform from the Jurassic Cañadón Asfalto Formation, Patagonia, Argentina. J Mammal Evol, 19(4):235-248 |
[10] | Gaetano L C, Marsicano C A, Rougier G W, 2013. A revision of the putative Late Cretaceous triconodonts from South America. Cretaceous Res, 46:90-100 |
[11] | Gao C L, Wilson G P, Luo Z X et al., 2009. A new mammal skull from the Lower Cretaceous of China with implications for the evolution of obtuse-angled molars and ‘amphilestid’ eutriconodonts. Proc R Soc B, doi: 10.1098/rspb.2009.1014 |
[12] | Godefroit P, Guo D Y, 1999. A new amphilestid mammal from the Early Cretaceous of Inner Mongolia (P. R. China). Bull Inst R Sci Nat Belg, Sci Terre, 69(Suppl B):7-16 |
[13] |
Han G, Meng J, 2016. A new spalacolestine mammal from the Early Cretaceous Jehol Biota and implications for the morphology, phylogeny, and palaeobiology of Laurasian ‘symmetrodontans’ . Zool J Linn Soc, 178(2):343-380
DOI URL |
[14] | He H Y, Wang X L, Zhou Z H et al., 2004. Timing of the Jiufotang Formation (Jehol Group) in Liaoning, northeastern China, and its implications. Geophys Res Lett, 31:L12605, doi: 10.1029/2004GL019790 |
[15] | He H Y, Wang X L, Zhou Z H et al., 2006. 40Ar/39Ar dating of Lujiatun Bed (Jehol Group) in Liaoning, northeastern China. Geophys Res Lett, 33:L04303, doi: 10.1029/2005GL025274 |
[16] | Hou S L, Meng J, 2014. A new eutriconodont mammal from the Early Cretaceous Jehol Biota of Liaoning, China. Chinese Sci Bull, 59(5-6):546-553 |
[17] | Hu Y M, Fox R C, Wang Y Q et al., 2005a. A new spalacotheriid symmetrodont from the Early Cretaceous of northeastern China. Am Mus Novit, 3475:1-20 |
[18] | Hu Y M, Meng J, Wang Y Q et al., 2005b. Large Mesozoic mammals fed on young dinosaurs. Nature, 433:149-152 |
[19] | Hu Y M, Wang Y Q, Fox R C et al., 2005c. Novel dental pattern in a Mesozoic mammal. Chinese Sci Bull, 50(7):713-715 |
[20] | Jenkins F A Jr, Crompton A W, 1979 Triconodonta. In: Lillegraven J A, Kielan-Jaworowska Z, Clemens W A eds. Mesozoic Mammals: the First Two-Thirds of Mammalian History. Berkeley: University of California Press. 74-90 |
[21] | Jenkins F A Jr, Schaff C R, 1988. The Early Cretaceous mammal Gobiconodon (Mammalia, Triconodonta) from the Cloverly Formation in Montana. J Vert Paleont, 8(1):1-24 |
[22] |
Ji Q, Luo Z X, Ji S A, 1999. A Chinese triconodont mammal and mosaic evolution of the mammalian skeleton. Nature, 398:326-330
DOI URL |
[23] |
Kermack K A, Mussett F, Rigney H W, 1973. The lower jaw of Morganucodon. Zool J Linn Soc, 53(2):87-175
DOI URL |
[24] | Kielan-Jaworowska Z, Dashzeveg D, 1998. Early Cretaceous amphilestid (‘triconodont’) mammals from Mongolia. Acta Palaeont Pol, 43(3):413-438 |
[25] | Kielan-Jaworowska Z, Cifelli R L, Luo Z X, 2004. Mammals from the Age of Dinosaurs—Origins, Evolution and Structure. New York: Columbia University Press. 1-630 |
[26] |
Kurochkin E N, Zelenkov N V, Averianov A O et al., 2011. A new taxon of birds (Aves) from the Early Cretaceous of western Siberia, Russia. J Syst Palaeont, 9(1):109-117
DOI URL |
[27] |
Kusuhashi N, Hu Y M, Wang Y Q et al., 2009a. New triconodontids (Mammalia) from the Lower Cretaceous Shahai and Fuxin formations, northeastern China. Geobios, 42(6):765-781
DOI URL |
[28] |
Kusuhashi N, Hu Y M, Wang Y Q et al., 2009b. Two eobaatarid (Multituberculata; Mammalia) genera from the Lower Cretaceous Shahai and Fuxin formations, northeastern China. J Vert Paleont, 29(4):1264-1288
DOI URL |
[29] |
Kusuhashi N, Hu Y M, Wang Y Q et al., 2010. New multituberculate mammals from the Lower Cretaceous (Shahai and Fuxin formations), northeastern China. J Vert Paleont, 30(5):1501-1514
DOI URL |
[30] |
Kusuhashi N, Wang Y Q, Li C K et al., 2016. Two new species of Gobiconodon (Mammalia, Eutriconodonta, Gobiconodontidae) from the Lower Cretaceous Shahai and Fuxin formations, northeastern China. Hist Biol, 28(1-2):14-26
DOI URL |
[31] | Li C K, Wang Y Q, Hu Y M et al., 2003. A new species of Gobiconodon (Triconodonta, Mammalia) and its implication for the age of Jehol Biota. Chinese Sci Bull, 48(11):1129-1134 |
[32] | Li C K, Setoguchi T, Wang Y Q et al., 2005. The first record of “eupantotherian” (Theria, Mammalia) from the late Early Cretaceous of western Liaoning, China. Vert PalAsiat, 43(4):245-255 |
[33] |
Li G, Matsuoka A, 2015. Searching for a non-marine Jurassic/Cretaceous boundary in northeastern China. J Geol Soc Japan, 121(3):109-122
DOI URL |
[34] |
Li J L, Wang Y, Wang Y Q et al., 2000. A new family of primitive mammal from the Mesozoic of western Liaoning, China. Chinese Sci Bull, 45(23):2545-2549
DOI URL |
[35] | Linnaeus C, 1758. Systema naturae per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Vol. 1: Regnum animale. Editio decima, reformata. Stockholm: Laurentii Salvii. 1-823 |
[36] |
Lopatin A V, 2013. New finds of Early Cretaceous mammals in Mongolia. Dokl Biol Sci, 449(1):103-105
DOI URL |
[37] |
Lopatin A V, 2017. Early Cretaceous mammals from the Khamryn-Us and Shalan-Ikher localities in Mongolia. Dokl Biol Sci, 477(1):210-213
DOI URL |
[38] |
Lopatin A V, Averianov A O, 2015. Gobiconodon (Mammalia) from the Early Cretaceous of Mongolia and revision of Gobiconodontidae. J Mammal Evol, 22(1):17-43
DOI URL |
[39] |
Lopatin A V, Badamgarav D, 2013. Zuun-Höovör, Övörkhangai, Mongolia: a new locality of Early Cretaceous mammals. Dokl Earth Sci, 453(2):1178-1180
DOI URL |
[40] |
Lopatin A V, Maschenko E N, Averianov A O, 2010. A new genus of triconodont mammal from the Early Cretaceous of western Siberia. Dokl Biol Sci, 433(1):282-285
DOI URL |
[41] |
Luo Z X, Chen P J, Li G et al., 2007. A new eutriconodont mammal and evolutionary development in early mammals. Nature, 446:288-293
DOI URL |
[42] |
Martin T, Marugán-Lobón J, Vullo R et al., 2015. A Cretaceous eutriconodont and integument evolution in early mammals. Nature, 526:380-384
DOI URL |
[43] | Maschenko E N, Lopatin A V, 1998. First record of an Early Cretaceous triconodont mammal in Siberia. Bull Inst R Sci Nat Belg, Sci Terre, 68:233-236 |
[44] | Matsumoto A, Kusuhashi N, Murakami M et al., 2006. LA-ICPMS U-Pb zircon dating of tuff beds of the upper Mesozoic Tetori Group . Kyoto: Abstracts with Programs of the 155th Regular Meeting of the Palaeontological Society of Japan. 30 |
[45] | Meng J, 2014. Mesozoic mammals of China: implications for phylogeny and early evolution of mammals. Natl Sci Rev, 1(4):521-542 |
[46] | Meng J, Hu Y M, Wang Y Q et al., 2003. The ossified Meckel’s cartilage and internal groove in Mesozoic mammaliaforms: implications to origin of the definitive mammalian middle ear. Zool J Linn Soc, 138(4):431-448 |
[47] | Meng J, Hu Y M, Wang Y Q et al., 2005. A new triconodont (Mammalia) from the Early Cretaceous Yixian Formation of Liaoning, China. Vert PalAsiat, 43(1):1-10 |
[48] | Meng J, Wang Y Q, Li C K, 2011. Transitional mammalian middle ear from a new Cretaceous Jehol eutriconodont. Nature, 472:181-185 |
[49] | Meng J, Wang Y Q, Li C K, 2015. Paleovertebrata Sinica, Vol. 3 Stem Synapsida and Mammalia, Fasc. 2 Primitive Mammals. Beijing: Science Press. 1-293 |
[50] | Minjin B, Chuluun M, Geisler J H, 2003. A report of triconodont mammal jaw from Oosh, an Early Cretaceous locality in Mongolia. Publ Mongol Univ Sci Technol Inst Geol Ser Geol, 9:89-93 |
[51] | Miyata K, Azuma Y, Shibata M, 2016. New mammalian specimens from the Lower Cretaceous Kitadani Formation, Tetori Group, Fukui, Japan. Hist Biol, 28(1-2):139-150 |
[52] | Montellano M, Hopson J A, Clark J M, 2008. Late Early Jurassic mammaliaforms from Huizachal Canyon, Tamaulipas, México. J Vert Paleont, 28(4):1130-1143 |
[53] | O’Connor J K, Averianov A O, Zelenkov N V, 2014. A confuciusornithiform (Aves, Pygostylia)-like tarsometatarsus from the Early Cretaceous of Siberia and a discussion of the evolution of avian hind limb musculature. J Vert Paleont, 34(3):647-656 |
[54] | Pan Y H, Sha J G, Zhou Z H et al., 2013. The Jehol Biota: definition and distribution of exceptionally preserved relicts of a continental Early Cretaceous ecosystem. Cretaceous Res, 44:30-38 |
[55] | Rougier G W, Novacek M J, McKenna M C et al., 2001. Gobiconodonts from the Early Cretaceous of Oshih (Ashile), Mongolia. Am Mus Novit, 3348:1-30 |
[56] | Rougier G W, Garrido A, Gaetano L et al., 2007a. First Jurassic triconodont from South America. Am Mus Novit, 3580:1-17 |
[57] | Rougier G W, Isaji S, Manabe M, 2007b. An Early Cretaceous mammal from the Kuwajima Formation (Tetori Group), Japan, and a reassessment of triconodont phylogeny. Ann Carnegie Mus, 76(2):73-115 |
[58] | Sakai Y, Tsutsumi Y, Kusuhashi N et al., 2019. Zircon LA-ICP-MS U-Pb age of a tuff from the Akaiwa Formation of the Tetori Group in the Shiramine area, Ishikawa Prefecture, central Japan. J Geol Soc Japan, 125(3):255-260 |
[59] | Sereno P C, 2010. Taxonomy, cranial morphology, and relationships of parrot-beaked dinosaurs (Ceratopsia: Psittacosaurus). In: Ryan M, Chinnery-Allgeier B J, Eberth D A eds. New Perspectives on Horned Dinosaurs: The Royal Tyrrell Museum Ceratopsian Symposium. Bloomington: Indiana University Press. 21-58 |
[60] | Shikama T, 1947. Teilhardosaurus and Endotherium, new Jurassic Reptilia and Mammalia from the Husin Coal-Field, south Manchuria. Proc Japan Acad, 23(7):76-84 |
[61] | Sigogneau-Russell D, 2003. Discovery of triconodont mammals from the Early Cretaceous of North Africa: affinities of the amphilestids. Palaeovertebrata, 32(1):27-55 |
[62] | Slaughter B H, 1969. Astroconodon, the Cretaceous triconodont. J Mammal, 50(1):102-107 |
[63] | Sweetman S C, 2006. A gobiconodontid (Mammalia, Eutriconodonta) from the Early Cretaceous (Barremian) Wessex Formation of the Isle of Wight, southern Britain. Palaeontology, 49(4):889-897 |
[64] | Swisher CC III, Wang Y Q, Wang X L et al., 1999. Cretaceous age for the feathered dinosaurs of Liaoning, China. Nature, 400:59-61 |
[65] | Swisher CC III, Wang X L, Zhou Z H et al., 2002. Further support for a Cretaceous age for the feathered-dinosaur beds of Liaoning, China: new 40Ar/39Ar dating of the Yixian and Tuchengzi formations. Chinese Sci Bull, 47(2):136-139 |
[66] | Tang F, Luo Z X, Zhou Z H et al., 2001. Biostratigraphy and palaeoenvironment of the dinosaur-bearing sediments in Lower Cretaceous of Mazongshan area, Gansu Province, China. Cretaceous Res, 22:115-129 |
[67] | Trofimov B A, 1978. The first triconodonts (Mammalia, Triconodonta) from Mongolia. Dokl Acad Nauk SSSR, 243(1):213-216 |
[68] | Wang W L, Zheng S L, Zhang L J, et al., 1989. Mesozoic stratigraphy and palaeontology of western Liaoning. China: Part I. Beijing: Geological Publishing House. 1-168 |
[69] | Wang Y Q, Hu Y M, Meng J et al., 2001. An ossified Meckel’s cartilage in two Cretaceous mammals and origin of the mammalian middle ear. Science, 294:357-361 |
[70] | Wang Y Q, Hu Y M, Zhou M Z, et al., 1995. Mesozoic mammal localities in western Liaoning, Northeast China. In: Sun A L, Wang Y Q eds. Sixth Symposium on Mesozoic Terrestrial Ecosystems and Biota. Beijing: China Ocean Press. 221-227 |
[71] | Wang Y Q, Kusuhashi N, Jin X et al., 2018. Reappraisal of Endotherium niinomii Shikama, 1947, a eutherian mammal from the Lower Cretaceous Fuxin Formation, Fuxin-Jinzhou Basin, Liaoning, China. Vert PalAsiat, 56(3):180-192 |
[72] | Yang X D, Li X Y, 1997. Stratigraphy (Lithostratic) of Liaoning Province: Multiple Classification and Correlation of the Stratigraphy of China 21. Wuhan: China University of Geoscience Press. 1-247 |
[73] | Yuan C X, Xu L, Zhang X L et al., 2009. A new species of Gobiconodon (Mammalia) from western Liaoning, China and its implication for the dental formula of Gobiconodon. Acta Geol Sin, 83(2):207-211 |
[1] | 劳伦斯J.弗林, 李强, 吉学平, 王晓鸣. 云南晚中新世一巨型竹鼠. 古脊椎动物学报, 2023, 61(4): 277-283. |
[2] | 王伴月, 邱占祥. 甘肃临夏盆地牙沟地区椒子沟组底部的小哺乳动物化石. 古脊椎动物学报, 2023, 61(4): 284-316. |
[3] | 王伴月, 邱占祥, 王世骐. 甘肃临夏盆地椒子沟组上部满散村小哺乳动物群. 古脊椎动物学报, 2023, 61(2): 123-141. |
[4] | 刘金毅, 张颖奇, 迟振卿, 王永, 杨劲松, 郑绍华. 泥河湾盆地叶沟晚上新世贺风三趾马动物群及其生物地层学意义. 古脊椎动物学报, 2022, 60(4): 278-323. |
[5] | 高殿松, 蒋顺兴, 徐莉, 程心, 杨丽丽, 贾松海, 汪筱林. 最大的梳颌翼龙类成员朱氏莫干翼龙再研究. 古脊椎动物学报, 2022, 60(3): 197-211. |
[6] | 袁梦, 李大庆, Daniel T. KSEPKA, 易鸿宇. 新发现的长吻型离龙(双孔亚纲:离龙目)幼年个体——袖珍蒙山龙,兼论新离龙类的个体发育. 古脊椎动物学报, 2021, 59(3): 213-228. |
[7] | 西冈佑一郎, 甲能直树, 工藤雄一郎. 川渝地区“Proboselaphus watasei Matsumoto, 1915” 的分类学修订. 古脊椎动物学报, 2021, 59(3): 200-212. |
[8] | 蒋顺兴, 张鑫俊, 程心, 汪筱林. 义县组上部一件无齿翼龙超科前肢及对金刚山义县翼龙的修订. 古脊椎动物学报, 2021, 59(2): 81-94. |
[9] | 张立民, 董为, 倪喜军, 李强. 晚中新世晚期土城子小哺乳动物组合及土城子动物群在内蒙古中部地区新近纪哺乳动物群序列中的位置. 古脊椎动物学报, 2021, 59(1): 45-63. |
[10] | 邱铸鼎, 王晓鸣, 李强, 李录, 王洪江, 陈海峰. 内蒙古哈拉津胡舒晚中新世动物群. 古脊椎动物学报, 2021, 59(1): 19-26. |
[11] | 董为, 刘文晖, 白炜鹏. 中国境内部分更新世哺乳动物群的支序系统学分析及生物年代学推断. 古脊椎动物学报, 2020, 58(1): 67-81. |
[12] | 张蜀康, 谢俊芳, 金幸生, 杜天明, 黄美燕. 浙江义乌恐龙蛋化石新类型及对南马东阳蛋的修订. 古脊椎动物学报, 2019, 57(4): 325-333. |
[13] | 廖俊棋, 徐星. 意外北票龙(兽脚类:镰刀龙类)头部骨骼学研究. 古脊椎动物学报, 2019, 57(2): 117-132. |
[14] | 王元青,楠桥直,金 迅,李传夔,濑户口烈司,高春玲,刘金远. 辽宁下白垩统阜新组真兽类哺乳动物新带氏远藤兽(Endotherium niinomiiShikama, 1947)再研究. 古脊椎动物学报, 2018, 56(3): 180-192. |
[15] | 董 为,张立民,刘文晖. 内蒙古赤峰初头朗早更新世哺乳动物群的新材料及二元相似性分析. 古脊椎动物学报, 2017, 55(3): 257-273. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||