欢迎访问《古脊椎动物学报》官方网站,今天是

间型三棱齿象(Trilophodon connexus Hopwood, 1935)属于豕棱齿象类而非嵌齿象

  • 李春晓 ,
  • 陈津 ,
  • 王世骐
展开
  • 1 中国科学院大学 北京 100049
    2 中国科学院古脊椎动物与古人类研究所,中国科学院脊椎动物演化与人类起源重点实验室 北京 100044

收稿日期: 2022-05-26

  网络出版日期: 2023-09-18

基金资助

第二次青藏高原综合科学考察研究项目(2019QZKK0705)

Reassessment of Trilophodon connexus Hopwood, 1935 and attributing it to the Choerolophodontidae

  • LI Chun-Xiao ,
  • CHEN Jin ,
  • WANG Shi-Qi
Expand
  • 1 University of Chinese Academy of Sciences Beijing 100049
    2 Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences Beijing 100044

Received date: 2022-05-26

  Online published: 2023-09-18

摘要

间型三棱齿象(Trilophodon connexus Hopwood, 1935)长期以来被认为是中国嵌齿象属(Gomphotherium)的一个代表种。然而,由于其下颌联合部与下门齿的形态未知,这一归入存疑。重新研究了来自新疆准噶尔盆地北缘乌伦古河地区哈拉玛盖组的一件此前归为陕西嵌齿象相似种(Gomphotherium cf. G. shensiensis)的下颌。该下颌联合部伸长,呈深槽状,下门齿缺失,因此确定可归入豕棱齿象科(Choerolophodontidae)。进一步将间型三棱齿象的正型标本与其相比较,两者颊齿的关键特征完全一致,包括:高度丘型化,m3伸长,具有四脊,上下颊齿第二脊“人字型”(chevron)很弱,第二脊中附锥与前中心小尖不愈合,釉质褶皱、齿谷中小锥及白垩质发育弱或缺失。因此,间型三棱齿象事实上是一种豕棱齿象类而非嵌齿象。综上所述,暂将其改定为间型“豕棱齿象” (“Choerolophodonconnexus (Hopwood, 1935))。同时,以上特征与北美的索普颌门齿象(Gnathabelodon thorpei)比较接近。此外,在颌门齿象属和间型“豕棱齿象”中,颊齿第二脊呈“人字型”, 釉质褶皱、齿谷中小锥及白垩质发育强这些典型的豕棱齿象属(Choerolophodon)的特征较弱甚至缺失,但m3齿脊数变多,这表明颌门齿象属可能起源于东亚的间型“豕棱齿象”。

本文引用格式

李春晓 , 陈津 , 王世骐 . 间型三棱齿象(Trilophodon connexus Hopwood, 1935)属于豕棱齿象类而非嵌齿象[J]. 古脊椎动物学报, 2024 , 62(1) : 33 -46 . DOI: 10.19615/j.cnki.2096-9899.230917

Abstract

Trilophodon connexus Hopwood, 1935 has long been considered a typical species of Gomphotherium in China. However, due to the unknown state of the mandibular symphysis and tusks, there is no definite evidence to assign “T. connexus” to Gomphotherium. Here we describe and reevaluate a hemimandible from the Halamagai Formation, Ulungur region, northern Junggar Basin, which was previously identified as Gomphotherium cf. G. shensiensis. The mandibular symphysis is deeply troughed and lacks mandibular tusks; therefore, it undoubtedly belongs to the Choerolophodontidae. Further comparison revealed that the cheek tooth morphology is identical to that of the type specimen of Trilophodon connexus. The characteristic features include high bunodonty, elongation of the m3 with four lophids, an only weakly chevroned lophid 2, enlargement of the posterior pretrite central conule 2, unfused state of the pretrite mesoconelet 2 (if present) and anterior pretrite central conule 2, as well as the absence of ptychodonty, choerodonty, and cementodonty. Therefore, T. connexus Hopwood, 1935 is a choerolophodontid rather than a species of Gomphotherium. Based on the above features, we provisionally refer to it as “Choerolophodonconnexus. “Choerolophodonconnexus is characterized by the following features: weak or absent ptychodonty, choerodonty, and loph chevron (which were all strong in the typical species of Choerolophodon), as well as multiplication of the lophids in the m3, which were similar to that of the North American Gnathabelodon. Therefore, Gnathabelodon might represent a distinct lineage within the Choerolophodontidae, and may be derived from the East Asian “Choerolophodonconnexus.

参考文献

[1] Barbour E H, Sternberg G F, 1935. Gnathabelodon thorpei, gen. et sp. nov., a new mud-grubbing mastodon. Bull Nebr State Mus, 42: 395-403
[2] Chen G F, 1988. Mastodont remains from the Miocene of Junggar Basin in Xinjiang. Vert PalAsiat, 26: 265-277
[3] Chen G F, 2021. Basal synapsids and mammals:hyracoidea, proboscidea, etc. In: Qiu Z X, Li C K eds. Palaeovertebrata Sinica. Beijing: Science Press. 1-231
[4] Chow M C, Chang Y P, 1974. Chinese Fossil Elephantoids. Beijing: Science Press. 1-74
[5] Gaziry A W, 1987. New mammals from the Jabal Zaltan site, Libya. Senckenbergiana Lethaea, 68: 69-89
[6] Hopwood A T, 1935. Fossil Proboscidea from China. Palaeontol Sin, Sér C, 9: 1-108
[7] Konidaris G E, Koufos G D, Kostopoulos D S et al., 2016. Taxonomy, biostratigraphy and palaeoecology of Choerolophodon (Proboscidea, Mammalia) in the Miocene of SE Europe-SW Asia: implications for phylogeny and biogeography. J Syst Palaeont, 14: 1-27
[8] Li, C X, Wang S Q, Hao C L et al., 2018. A textual research of the early localities of fossil Gomphotherium in the Xining Basin with relevant stratigraphic correlation. J Stratigr, 42: 313-324
[9] Li C X, Wang S Q, Mothé D et al., 2019. New fossils of Early and Middle Miocene Choerolophodon from northern China reveal a Holarctic distribution of Choerolophodontidae. J Vert Paleont, 39: e1618864
[10] Li C X, Wang S Q, Yang Q, 2022. Discovery of a primitive Gomphotherium from the Early Miocene of northern China and its biochronology and palaeobiogeography significance. Hist Biol, doi: 10.1080/08912963.2022.2077106
[11] MacInnes D G, 1942. Miocene and post-Miocene Proboscidea from east Africa. Trans Zool Soc London, 25: 33-106
[12] Maglio V J, 1974. A new proboscidean from the Late Miocene of Kenya. Palaeontology, 17: 699-705
[13] Matthews S C, 1973. Notes on open nomenclature and on synonymy lists. Palaeontology, 16: 713-719
[14] Osborn H F, 1936. Proboscidea: a Monograph of the Discovery, Evolution, Migration and Extinction of the Mastodonts and Elephants of the World. New York: The American Museum Press. 1-802
[15] Pickford M, 2001. Afrochoerodon nov. gen. kisumuensis (MacInnes) (Proboscidea, Mammalia) from Cheparawa, Middle Miocene, Kenya. Ann Paléont, 87: 99-117
[16] Qiu Z D, Li C K, Wang S J, 1981. Miocene mammalian fossils from Xining Basin, Qinghai. Vert PalAsiat, 19: 156-173
[17] Sanders W J, Miller E R, 2002. New proboscideans from the Early Miocene of Wadi Moghara, Egypt. J Vert Paleont, 22: 388-404
[18] Sanders W J, Gheerbrant E, Harris J M et al., 2010. Proboscidea. In: Werdelin L, Sanders W J eds.eds. Cenozoic Mammals of Africa. Berkeley: University of California Press. 161-251
[19] Sellards E H, 1940. New Pliocene mastodon. Bull Geol Soc Am, 51: 1659-1664
[20] Shoshani J, Tassy P, 2005. Advances in proboscidean taxonomy & classification, anatomy & physiology, and ecology & behavior. Quat Int, 126-128: 5-20
[21] Tassy P, 1983. Les Elephantoidea Miocènes du Plateau du Potwar, Groups de Siwalik, Pakistan. Ann Paléont, 69: 99-136, 235-297
[22] Tassy P, 1985. La place des mastodontes Miocènes de l’ancien monde dans la phylogénie des Proboscidea (Mammalia): hypothèses et conjectures. Vol I-III. Thèse Doctorat ès Sciences. Paris: Université Pierre et Marie Curie. 1-861
[23] Tassy P, 2014. L'odontologie de Gomphotherium angustidens (Cuvier, 1817) (Proboscidea, Mammalia): données issues du gisement d'En Péjouan (Miocène moyen du Gers, France). Geodiversitas, 36(1): 35-115
[24] Tobien H, 1973. On the evolution of mastodonts (Proboscidea, Mammalia), part 1: the bunodont trilophodont groups. Notizbl Hess L-Amt Bodenforsch, 101: 202-276
[25] Tobien H, 1980. A note on the skull and mandible of a new choerolophodont mastodont (Proboscidea, Mammalia) from the Middle Miocene of Chios (Aegean Sea, Greece). In: Jacobs L ed. Aspects of Vertebrate History: Essays in Honor of Edwin Harris Colbert. Flagstaff: Museum of Northern Arizona Press. 299-307
[26] Tobien H, Chen G F, Li Y Q, 1986. Mastodonts (Proboscidea, Mammalia) from the Late Neogene and Early Pleistocene of the People’s Republic of China, part I: historical account: the genera Gomphotherium, Choerolophodon, Synconolophus, Amebelodon, Platybelodon, Sinomastodon. Mainzer Geowiss Mitt, 15: 119-181
[27] Wang S Q, 2014. Gomphotherium inopinatum, a basal Gomphotherium species from the Linxia Basin, China, and other Chinese members of the genus. Vert PalAsiat, 52: 183-200
[28] Wang S Q, 2021. The anthracotheres from northern Junggar Basin and their palaeoclimatic significance in relation to the Tibetan Plateau. Palaeobio Palaeoenv, 101: 839-852
[29] Wang S Q, Deng T, 2011. The first Choerolophodon (Proboscidea, Gomphotheriidae) skull from China. Sci China Earth Sci, 54: 1326-1337
[30] Wang S Q, Duangkrayom J, Yang X W, 2015. Occurrence of the Gomphotherium angustidens group in China, based on a revision of Gomphotherium connexum (Hopwood, 1935) and Gomphotherium shensiensis Chang and Zhai, 1978: continental correlation of Gomphotherium species across the Palearctic. Pal?ont Z, 89: 1073-1086
[31] Wang S Q, Li Y, Duangkrayom J et al., 2017. A new species of Gomphotherium (Proboscidea, Mammalia) from China and the evolution of Gomphotherium in Eurasia. J Vert Paleont, 37: 1-15
[32] Wang S Q, Zhang X X, Li C X, 2020. Reappraisal of Serridentinus gobiensis Osborn & Granger and Miomastodon tongxinensis Chen: the validity of Miomastodon. Vert PalAsiat, 58: 134-158
[33] Wang S Q, Ye J, Meng J et al., 2022. Sexual selection promotes giraffoid head-neck evolution and ecological adaptation. Science, 376: 6597
[34] Wang S Q, Li C X, Li Y et al., 2023. Gomphotheres from Linxia Basin, China, and their significance in biostratigraphy, biochronology, and paleozoogeography. Palaeogeogr Palaeoclimat Palaeoecol, 613: 111405
[35] Wu Y, Deng T, Hu Y W et al., 2018. A grazing Gomphotherium in Middle Miocene Central Asia, 10 million years prior to the origin of the Elephantidae. Sci Rep, 8: 7640
[36] Zhai R J, 1961. On a collection of Neogene mammals from Ching-An, eastern Kansu. Vert PalAsiat, (3): 262-268
文章导航

/