欢迎访问《古脊椎动物学报》官方网站,今天是

MrBayes分子钟定年之程序

展开
  • 1 中国科学院古脊椎动物与古人类研究所,中国科学院脊椎动物演化与人类起源重点实验室 北京 100044
    2 中国科学院生物演化与环境卓越创新中心 北京 100044

收稿日期: 2019-01-14

  网络出版日期: 2019-07-20

基金资助

中国科学院率先行动百人计划青年俊才(C类)和中国科学院战略性先导科技专项(B类)(XDB26000000)

Molecular clock dating using MrBayes

Expand
  • 1 Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences Beijing 100044
    2 CAS Center for Excellence in Life and Paleoenvironment Beijing 100044

Received date: 2019-01-14

  Online published: 2019-07-20

摘要

介绍了利用MrBayes进行分子钟定年的研究概况和程序。利用一个整合分子序列和形态特征的膜翅目昆虫的数据,展示了两种现代方法:全证据定年和节点定年,并对这两种方法的相似点和不同之处进行比较和讨论。此外,还用无分子钟的方法对同一数据进行分析,并与分子钟定年法进行比较。

本文引用格式

张驰 . MrBayes分子钟定年之程序[J]. 古脊椎动物学报, 2019 , 57(3) : 241 -252 . DOI: 10.19615/j.cnki.1000-3118.190408

Abstract

This paper provides an overview and a protocol of molecular clock dating using MrBayes. Two modern approaches, total-evidence dating and node dating, are demonstrated using a truncated dataset of Hymenoptera with molecular sequences and morphological characters. The similarity and difference of the two methods are compared and discussed. Besides, a non-clock analysis is performed on the same dataset to compare with the molecular clock dating analyses.

参考文献

[1] Altekar G, Dwarkadas S, Huelsenbeck J P et al., 2004. Parallel Metropolis coupled Markov chain Monte Carlo for Bayesian phylogenetic inference. Bioinformatics, 20:407-415
[2] Ayres D L, Darling A, Zwickl D J et al., 2012. BEAGLE: an application programming interface and high-performance computing library for statistical phylogenetics. Syst Biol, 61:170-173
[3] Drummond A J, Ho S Y W, Phillips M J et al., 2006. Relaxed phylogenetics and dating with confidence. PLoS Biol, 4:e88
[4] Gavryushkina A, Welch D, Stadler T et al., 2014. Bayesian inference of sampled ancestor trees for epidemiology and fossil calibration. PLoS Comput Biol, 10:e1003919
[5] Hastings W K, 1970. Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57:97-109
[6] Heath T A, Huelsenbeck J P, Stadler T, 2014. The fossilized birth-death process for coherent calibration of divergence-time estimates. Proc Natl Acad Sci USA, 111:e2957-2966
[7] Ho S Y W, Phillips M J, 2009. Accounting for calibration uncertainty in phylogenetic estimation of evolutionary divergence times. Syst Biol, 58:367-380
[8] H?hna S, Stadler T, Ronquist F et al., 2011. Inferring speciation and extinction rates under different sampling schemes. Mol Biol Evol, 28:2577-2589
[9] Huelsenbeck J P, Larget B, Swofford D L, 2000. A compound Poisson process for relaxing the molecular clock. Genetics, 154:1879-1892
[10] Lakner C, van der Mark P, Huelsenbeck J P et al., 2008. Efficiency of Markov chain Monte Carlo tree proposals in Bayesian phylogenetics. Syst Biol, 57:86-103
[11] Lepage T, Bryant D, Philippe H et al., 2007. A general comparison of relaxed molecular clock models. Mol Biol Evol, 24:2669-2680
[12] Lewis P O, 2001. A likelihood approach to estimating phylogeny from discrete morphological character data. Syst Biol, 50:913-925
[13] Liu L, 2008. BEST: Bayesian estimation of species trees under the coalescent model. Bioinformatics, 24:2542-2543
[14] Liu L, Yu L, Kubatko L et al., 2009. Coalescent methods for estimating phylogenetic trees. Mol Phylogenet Evol, 53:320-328
[15] Metropolis N, Rosenbluth A W, Rosenbluth M N et al., 1953. Equation of state calculations by fast computing machines. J Chem Phys, 21:1087-1092
[16] Rannala B, Zhu T, Yang Z, 2012. Tail paradox, partial identifiability, and influential priors in Bayesian branch length inference. Mol Biol Evol, 29:325-335
[17] Ronquist F, Huelsenbeck J P, 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19:1572-1574
[18] Ronquist F, Klopfstein S, Vilhelmsen L et al., 2012a. A total-evidence approach to dating with fossils, applied to the early radiation of the Hymenoptera. Syst Biol, 61:973-999
[19] Ronquist F, Teslenko M, van der Mark P et al., 2012b. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol, 61:539-542
[20] Stadler T, 2010. Sampling-through-time in birth-death trees. J Theoret Biol, 267:396-404
[21] Thorne J L, Kishino H, 2002. Divergence time and evolutionary rate estimation with multilocus data. Syst Biol, 51:689-702
[22] Van Noorden R, Maher B, Nuzzo R, 2014. The top 100 papers. Nature, 514:550-553
[23] Xie W, Lewis P O, Fan Y et al., 2011. Improving marginal likelihood estimation for Bayesian phylogenetic model selection. Syst Biol, 60:150-160
[24] Yang Z, 1994a. Estimating the pattern of nucleotide substitution. J Mol Evol, 39:105-111
[25] Yang Z, 1994b. Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: approximate methods. J Mol Evol, 39:306-314
[26] Yang Z, Rannala B, 2006. Bayesian estimation of species divergence times under a molecular clock using multiple fossil calibrations with soft bounds. Mol Biol Evol, 23:212-226
[27] Zhang C, Rannala B, Yang Z, 2012. Robustness of compound Dirichlet priors for Bayesian inference of branch lengths. Syst Biol, 61:779-784
[28] Zhang C, Stadler T, Klopfstein S et al., 2016. Total-evidence dating under the fossilized birth-death process. Syst Biol, 65:228-249
文章导航

/