Vertebrata Palasiatica ›› 2021, Vol. 59 ›› Issue (2): 106-124.DOI: 10.19615/j.cnki.1000-3118.201222
Previous Articles Next Articles
WU Qian1,2,3, Jingmai K. O’CONNOR4, LI Zhi-Heng1,2, Alida M. BAILLEUL1,2,*()
Received:
2020-11-20
Online:
2021-05-20
Published:
2021-04-20
吴倩1,2,3, 邹晶梅4, 李志恒1,2, 艾莉达1,2,*()
通讯作者:
*alida.bailleul@ivpp.ac.cn基金资助:
CLC Number:
WU Qian, Jingmai K. O’CONNOR, LI Zhi-Heng, Alida M. BAILLEUL. Cartilage on the furculae of living birds and the extinct bird Confuciusornis: a preliminary analysis and implications for flight style inferences in Mesozoic birds. Vertebrata Palasiatica, 2021, 59(2): 106-124.
吴倩, 邹晶梅, 李志恒, 艾莉达. 2021, 59(2): 106-124, 现生鸟类和孔子鸟(Confuciusornis)叉骨软骨的研究:初步分析以及对中生代鸟类飞行方式的启示. 古脊椎动物学报.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.vertpala.ac.cn/EN/10.19615/j.cnki.1000-3118.201222
[1] |
Bailleul A M, Hall B K, Horner J R, 2012. First evidence of dinosaurian secondary cartilage in the post-hatching skull of Hypacrosaurus stebingeri (Dinosauria, Ornithischia). PLoS ONE, 7(4):e36112
DOI URL |
[2] |
Bailleul A M, Hall B K, Horner J R, 2013. Secondary cartilage revealed in a non-avian dinosaur embryo. PLoS ONE, 8(2):e56937
DOI URL |
[3] |
Bailleul A M, Witmer L M, Holliday C M, 2017. Cranial joint histology in the mallard duck (Anas platyrhynchos): new insights on avian cranial kinesis. J Anat, 230(3):444-460
DOI URL |
[4] |
Bailleul A M, Li Z H, O’Connor J K et al., 2019a. Origin of the avian predentary and evidence of a unique form of cranial kinesis in Cretaceous ornithuromorphs. Proc Natl Acad Sci USA, 116:24696-24706
DOI URL |
[5] | Bailleul A M, O’Connor J K, Schweitzer M H, 2019b. Dinosaur paleohistology: review, trends and new avenues of investigation. PeerJ, 2019(9):1-45 |
[6] | Baumel J, Raikow R, 1993. Arthrologia. In: Baumel J J, King A S, Breazile J E et al. eds. Handbook of Avian Anatomy: Nomina Anatomica Avium, 2nd ed. Cambridge, Massachusetts: Publications of the Nuttall Ornithological Club. 133-187 |
[7] | Bishop C M, Butler P J, 2015. Flight. In: Scanes C G, Sturkie P D eds. Sturkie’s Avian Physiology. London: Elsevier/Academic Press. 919-967 |
[8] |
Bruderer B, Peter D, Boldt A et al., 2010. Wing-beat characteristics of birds recorded with tracking radar and cine camera. Ibis, 152(2):272-291
DOI URL |
[9] |
Brusatte S L, Lloyd G T, Wang S C et al., 2014. Gradual assembly of avian body plan culminated in rapid rates of evolution across the dinosaur-bird transition. Curr Biol, 24(20):2386-2392
DOI URL |
[10] |
Butler P J, 2016. The physiological basis of bird flight. Philos Trans R Soc B, 371:20150384
DOI URL |
[11] |
Canoville A, Schweitzer M H, Zanno L E, 2019. Systemic distribution of medullary bone in the avian skeleton: ground truthing criteria for the identification of reproductive tissues in extinct Avemetatarsalia. BMC Evol Biol, 19(1):71
DOI PMID |
[12] | Carter D R, Orr T E, Fyhrie D P et al., 1987. Influences of mechanical stress on prenatal and postnatal skeletal development. Clin Orthop Relat Res, 219:237-250 |
[13] | Chiappe L M, Ji S A, Ji Q et al., 1999. Anatomy and systematics of the Confuciusornithidae (Theropoda, Aves) from the Late Mesozoic of northeastern China. Bull Am Mus Nat Hist, 242:1-89 |
[14] |
Chiappe L M, Di L, Serrano F J et al., 2019a. Anatomy and flight performance of the early enantiornithine bird Protopteryx fengningensis: information from new specimens of the Early Cretaceous Huajiying Formation of China. Anat Rec, 303(4):716-731
DOI URL |
[15] |
Chiappe L M, Meng Q J, Serrano F et al., 2019b. New Bohaiornis-like bird from the Early Cretaceous of China: enantiornithine interrelationships and flight performance. PeerJ, 7:e7846
DOI URL |
[16] |
Chinsamy A, Marugán-Lobón J, Serrano F J et al., 2020. Osteohistology and life history of the basal pygostylian, Confuciusornis sanctus. Anat Rec, 303(4):949-962
DOI URL |
[17] |
Close R A, Rayfield E J, 2012. Functional morphometric analysis of the furcula in Mesozoic birds. PLoS ONE, 7(5):e36664
DOI URL |
[18] |
Dececchi T A, Larsson H C, 2011. Assessing arboreal adaptations of bird antecedents: testing the ecological setting of the origin of the avian flight stroke. PLoS ONE, 6(8):e22292
DOI URL |
[19] |
Dial K P, Jackson B E, Segre P, 2008. A fundamental avian wing-stroke provides a new perspective on the evolution of flight. Nature, 451:985
DOI URL |
[20] |
Falk A R, Kaye T G, Zhou Z H et al., 2016. Laser fluorescence illuminates the soft tissue and life habits of the Early Cretaceous bird Confuciusornis. PLoS ONE, 11(4):e0167284
DOI URL |
[21] | Feo T J, Field D J, Prum R O, 2015. Barb geometry of asymmetrical feathers reveals a transitional morphology in the evolution of avian flight. Proc R Soc B-Biol Sci, 282:20142864 |
[22] | Fürbringer M, 1888. Untersuchungen zur Morphologie und Systemat der Vögel II. Allgemeiner Theil. Amsterdam: Verlag von T J. Van Holkema. 1-884 |
[23] |
Hall B K, 1967. The distribution and fate of the adventitious cartilage in the skull of the eastern rosella, Platycerus eximius (Aves : Psittaciformes). Aust J Zool, 15(4):685
DOI URL |
[24] |
Hall B K, 1972. Immobilization and cartilage transformation into bone in the embryonic chick. Anat Rec, 173(4):391-404
PMID |
[25] |
Hall B K, 1986. The role of movement and tissue interactions in the development and growth of bone and secondary cartilage in the clavicle of the embryonic chick. Development, 93(1):133-152
DOI URL |
[26] | Hall B K, 2000. The evolution of the neural crest in vertebrates. In: Olsson L, Jacobson C O eds. Regulatory Processes in Development, Wenner-Gren International Series Vol. 76. London: Portland Press. 101-113 |
[27] |
Hall B K, 2001. Development of the clavicles in birds and mammals. J Exp Zool, 289(3):153-161
PMID |
[28] | Hall B K, Vickaryous M K, 2015. Merrythoughts of the past and present: revisiting the homology of the furcula. In: Belinda-Emonds O R P, Powell G L, Jamniczky H A eds. All Animals are Interesting. A Festschrift in Honour of Anthony P. Russell. Oldenburg Germany: BIS-Verlag -Carl von Ossietzky University. 439-454 |
[29] |
Hou L H, Martin L D, Zhou Z H et al., 1999. A diapsid skull in a new species of the primitive bird Confuciusornis. Nature, 399:679-682
DOI URL |
[30] |
Hui C A, 2002. Avian furcula morphology may indicate relationships of flight requirements among birds. J Morphol, 251(3):284-293
DOI URL |
[31] |
Jenkins F A, 1993. The evolution of the avian shoulder joint. Am J Sci, 293(A):253-267
DOI URL |
[32] |
Jenkins F A, Dial K P, Goslow G E, 1988. A cineradiographic analysis of bird flight: the wishbone in starlings is a spring. Science, 241:1495-1498
DOI URL |
[33] |
Jiang B, Zhao T, Regnault S et al., 2017. Cellular preservation of musculoskeletal specializations in the Cretaceous bird Confuciusornis. Nat Commun, 8(1):1-10
DOI URL |
[34] | Kardong K V, 2019. Vertebrates: Comparative Anatomy, Function, Evolution. 8th ed. New York, NY: McGraw-Hill Education. 1-817 |
[35] |
Liu D, Chiappe L M, Serrano F et al., 2017. Flight aerodynamics in enantiornithines: information from a new Chinese Early Cretaceous bird. PLoS ONE, 12(10):e0184637
DOI URL |
[36] |
McGonnell I M, 2001. The evolution of the pectoral girdle. J Anat, 199:189-194
PMID |
[37] |
Mitchell J, Legendre L J, Lefèvre C et al, 2017. Bone histological correlates of soaring and high-frequency flapping flight in the furculae of birds. Zoology, 122:90-99
DOI URL |
[38] |
Müller G B, 2003. Embryonic motility: environmental influences and evolutionary innovation. Evol Dev, 5(1):56-60
PMID |
[39] |
Murray P D, Drachman D B, 1969. The role of movement in the development of joints and related structures: the head and neck in the chick embryo. Development, 22(3):349-371
DOI URL |
[40] |
Murray P D F, Smiles M, 1965. Factors in the evocation of adventitious (secondary) cartilage in the chick embryo. Aust J Zool, 13(3):351-382
DOI URL |
[41] |
Nudds R L, Dyke G J, 2010. Narrow primary feather rachises in Confuciusornis and Archaeopteryx suggest poor flight ability. Science, 328:887-889
DOI URL |
[42] |
O’Connor P M, 2004. Pulmonary pneumaticity in the postcranial skeleton of extant Aves: a case study examining Anseriformes. J Morphol, 261(2):141-161
DOI URL |
[43] | Persson M, 1983. The role of movements in the development of sutural and diarthrodial joints tested by long-term paralysis of chick embryos. J Anat, 137(3):591-599 |
[44] |
Pollard A S, Boyd S, McGonnell I M et al., 2017. The role of embryo movement in the development of the furcula. J Anat, 230(3):435-443
DOI URL |
[45] |
Ponomartsev S, Valasek P, Patel K et al., 2017. Neural crest contribution to the avian shoulder girdle and implications to girdle evolution in vertebrates. Biol Comm, 62(1):26-37
DOI URL |
[46] |
Ponton F, Montes L, Castanet J et al., 2007. Bone histological correlates of high-frequency flapping flight and body mass in the furculae of birds: a phylogenetic approach. Biol J Linn Soc, 91(4):729-738
DOI URL |
[47] |
Russell A P, Joffe D J, 1985. The early development of the quail (Coturnix c. japonica) furcula reconsidered. J Zool, 206(1):69-81
DOI URL |
[48] |
Schepelmann K, 1990. Erythropoietic bone marrow in the pigeon: development of its distribution and volume during growth and pneumatization of bones. J Morphol, 203(1):21-34
PMID |
[49] | Senter P, 2006. Scapular orientation in the theropods and basal birds, and the origin of flapping flight. Acta Palaeontol Pol, 51(2):305-313 |
[50] |
Serrano F J, Chiappe L M, 2017. Aerodynamic modelling of a Cretaceous bird reveals thermal soaring capabilities during early avian evolution. J R Soc Interface, 14:20170182
DOI URL |
[51] |
Serrano F J, Palmqvist P, Chiappe L M et al., 2017. Inferring flight parameters of Mesozoic avians through multivariate analyses of forelimb elements in their living relatives. Paleobiology, 43(1):144-169
DOI URL |
[52] |
Serrano F J, Chiappe L M, Palmqvist P et al., 2018. Flight reconstruction of two European enantiornithines (Aves, Pygostylia) and the achievement of bounding flight in Early Cretaceous birds. Palaeontology, 61(3):359-368
DOI URL |
[53] |
Shatkovska O V, Ghazali M, 2017. Relationship between developmental modes, flight styles, and wing morphology in birds. Eur Zool J, 84(1):390-401
DOI URL |
[54] |
Usherwood J R, 2016. Physiological, aerodynamic and geometric constraints of flapping account for bird gaits, and bounding and flap-gliding flight strategies. J Theor Biol, 408:42-52
DOI URL |
[55] |
Vazquez R J, 1992. Functional osteology of the avian wrist and the evolution of flapping flight. J Morphol, 211(3):259-268
DOI URL |
[56] | Vickaryous M K, Hall B K, 2010. Comparative development of the crocodylian interclavicle and avian furcula, with comments on the homology of dermal elements in the pectoral apparatus. J Exp Zool, 314B(3):196-207 |
[57] | Wang X, Tang H K, Clarke J A, 2019a. Flight, symmetry and barb angle evolution in the feathers of birds and other dinosaurs. Biol Lett, 15(12):9-14 |
[58] | Wang M, O’Connor J K, Zhou Z H, 2019b. A taxonomical revision of the Confuciusornithiformes (Aves: Pygostylia). Vert PalAsiat, 57:1-37 |
[59] |
Witten P E, Hall B K, 2003. Seasonal changes in the lower jaw skeleton in male Atlantic salmon (Salmo salar L.): remodelling and regression of the kype after spawning. J Anat, 203(5):435-450
DOI URL |
[1] | QIN Zi-Chuan, ZHAO Qi, XU Xing. Metatarsal II osteohistology of Xixianykus zhangi (Theropoda: Alvarezsauria) and its implications for the development of the arctometatarsalian pes . Vertebrata Palasiatica, 2019, 57(3): 205-213. |
[2] | ZHOU Ya-Chun, Corwin SULLIVAN, ZHANG Fu-Cheng. Negligible effect of tooth reduction on body mass in Mesozoic birds . Vertebrata Palasiatica, 2019, 57(1): 38-50. |
[3] | WANG Min, Jingmai O’CONNOR, ZHOU Zhong-He. A taxonomical revision of the Confuciusornithiformes (Aves: Pygostylia) . Vertebrata Palasiatica, 2019, 57(1): 1-37. |
[4] | Amanda R. FALK, Jong-Deock LIM, Stephen T. HASIOTIS. A behavioral analysis of fossil bird tracks from the Haman Formation (Republic of Korea) shows a nearly modern avian ecosystem . Vertebrata Palasiatica, 2014, 52(1): 129-152. |
[5] | Jingmai K. O’CONNOR, WANG Min, ZHENG Xiao-Ting, WANG Xiao-Li, ZHOU Zhong-He. The histology of two female Early Cretaceous birds . Vertebrata Palasiatica, 2014, 52(1): 112-128. |
[6] | XU Xing, ZHAO Qi, Corwin Sullivan, TAN Qing-Wei, Martin SANDER, MA Qing-Yu. THE TAXONOMY OF THE TROODONTID IVPP V 10597 RECONSIDERED . Vertebrata Palasiatica, 2012, 50(2): 140-150. |
[7] | LIU Di, ZHOU Zhong-He, ZHANG Yu-Guang. MASS ESTIMATE AND EVOLUTIONARY TREND IN CHINESE MESOZOIC FOSSIL BIRDS . Vertebrata Palasiatica, 2012, 50(1): 39-52. |
[8] | XU Xing, GUO Yu. THE ORIGIN AND EARLY EVOLUTION OF FEATHERS: INSIGHTS FROM RECENT PALEONTOLOGICAL AND NEONTOLOGICAL DATA . Vertebrata Palasiatica, 2009, 47(4): 311-329. |
[9] | Zhang Yuguang, Tian Xiaoyang. STATISTIC ANALYSIS OF THE TARSOMETATARSUS MORPHOLOGY OF MESOZOIC BIRDS FROM WESTERN LIAONING, CHINA AND ITS IMPLICATIONS . Vertebrata Palasiatica, 2006, 44(04): 297-306. |
[10] | Zhou Zhonghe, Zhang Fucheng. Mesozoic birds of China—A synoptic review . Vertebrata Palasiatica, 2006, 44(01): 74-98. |
[11] | ZHONG Zhonghe, HOU Lianhai. CONFUCIUSORNIS AND THE EARLY EVOLUTION OF BIRDS . Vertebrata Palasiatica, 1998, 36(02): 136-146. |
[12] | YAO Jinxian, ZHANG Yun, PANG Qiqing. HISTOLOGICAL STUDY ON THE LATE CRETACEOUS DINOSAUR'S BONES, AND COMPARISON WITH MODERN REPTILIAN AND AVIAN BONES . Vertebrata Palasiatica, 1997, 35(03): 170-181. |
[13] | Hou Lianhai, Zhou Zhonghe, Gu Yucai, Sun Yutie. INTRODUCTION TO MESOZOIC BIRDS FROM LIAONING, CHINA . Vertebrata Palasiatica, 1995, 33(04): 261-271. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||