Vertebrata Palasiatica ›› 2021, Vol. 59 ›› Issue (3): 229-244.DOI: 10.19615/j.cnki.1000-3118.210309
Previous Articles Next Articles
LI Zhi-Heng1,2(), Alida M. BAILLEUL1,2, Thomas A. STIDHAM1,2,3, WANG Min1,2, DENG Tao1,2,3
Received:
2020-12-25
Online:
2021-07-20
Published:
2021-07-20
李志恒1,2(), 艾莉达1,2, Thomas A. STIDHAM1,2,3, 王敏1,2, 邓涛1,2,3
通讯作者:
lizhiheng@ivpp.ac.cn基金资助:
CLC Number:
LI Zhi-Heng, Alida M. BAILLEUL, Thomas A. STIDHAM, WANG Min, DENG Tao. Exceptional preservation of an extinct ostrich from the Late Miocene Linxia Basin of China. Vertebrata Palasiatica, 2021, 59(3): 229-244.
李志恒, 艾莉达, Thomas A. STIDHAM, 王敏, 邓涛. 2021, 59(3): 229-244, 临夏盆地晚中新世鸵鸟化石的特异保存. 古脊椎动物学报.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.vertpala.ac.cn/EN/10.19615/j.cnki.1000-3118.210309
[1] | An Z, 2014. Late Cenozoic climate change in Asia: loess, monsoon and monsoon-arid environment evolution. Dordrecht Heidelberg, New York, London: Springer Science & Business Media. 1-587 |
[2] |
An Z, Kutzbach J E, Prell W L et al., 2001. Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan plateau since Late Miocene times. Nature, 411:62-66
DOI URL |
[3] | Atalgin S H, Ates S, Kurtul I et al., 2018. Mineralization in the syrinx and caudal tracheal rings in the ostrich. Indian J Anim Res, 52:33-36 |
[4] |
Bailleul A M, O’Connor J K, Li Z H et al., 2020. Confirmation of ovarian follicles in an enantiornithine (Aves) from the Jehol biota using soft tissue analyses. Commun Biol, 3:399
DOI PMID |
[5] |
Briggs D E G, 2003. The role of decay and mineralization in the preservation of soft-bodied fossils. Annu Rev Earth Plant Sci, 31:275-301
DOI URL |
[6] |
Cobley M J, Rayfield E J, Barrett P M, 2013. Inter-vertebral flexibility of the ostrich neck: implications for estimating sauropod neck flexibility. PLoS One, 8:e72187
DOI URL |
[7] | Deng T, 2005. Character, age and ecology of the Hezheng Biota from northwestern China. China. Acta Geol Sin-Engl, 79:739-750 |
[8] | Deng T, 2009. Late Cenozoic environmental changes in the Linxia Basin (Gansu, China) as indicated by cenograms of fossil mammals. Vert PalAsiat, 47:282-298 |
[9] | Deng T, Wang X M, Ni X J et al., 2004. Sequence of the Cenozoic mammalian faunas of the Linxia Basin in Gansu, China. Acta Geol Sin-Engl, 78:8-14 |
[10] | Deng T, Qiu Z X, Wang B Y et al., 2013. Late Cenozoic biostratigraphy of the Linxia Basin, northwestern China. In: Wang X M, Fortelius M, Flynn L eds. Fossil Mammals of Asia: Neogene Biostratigraphy and Chronology. New York: Columbia University Press. 243-273 |
[11] |
Fan M, Dettman D L, Song C et al., 2007. Climatic variation in the Linxia Basin, NE Tibetan Plateau, from 13.1 to 4.3 Ma: the stable isotope record. Palaeogeogr, Palaeoclimatol, Palaeoecol, 247:313-328
DOI URL |
[12] |
Fang X, Garzione C, Van der Voo R et al., 2003. Flexural subsidence by 29 Ma on the NE edge of Tibet from the magnetostratigraphy of Linxia Basin, China. Earth Planet Sci Lett, 210:545-560
DOI URL |
[13] |
Fernández-Jalvo Y, Andrews P, Pesquero D et al., 2010. Early bone diagenesis in temperate environments: Part I: surface features and histology. Palaeogeogr, Palaeoclimatol, Palaeoecol, 288:62-81
DOI URL |
[14] |
Hackett C J, 1981. Microscopical focal destruction (tunnels) in exhumed human bones. Med Sci Law, 21:243-265
PMID |
[15] |
Hedges R E M, 2002. Bone diagenesis: an overview of processes. Archaeometry, 44:319-328
DOI URL |
[16] |
Hou L H, Zhou Z H, Zhang F C et al., 2005. A Miocene ostrich fossil from Gansu Province, northwest China. Chinese Sci Bull, 50:1808-1810
DOI URL |
[17] |
Junka A, Szymczyk P, Ziółkowski G et al., 2017. Bad to the bone: on in vitro and ex vivo microbial biofilm ability to directly destroy colonized bone surfaces without participation of host immunity or osteoclastogenesis. PLoS One, 12:e0169565
DOI URL |
[18] |
Li Z H, Zhou Z H, Deng T et al., 2014. A falconid from the Late Miocene of northwestern China yields further evidence of transition in Late Neogene steppe communities. Auk, 131:335-350
DOI URL |
[19] |
Li Z H, Clarke J A, Zhou Z H et al., 2016. A new Old World vulture from the Late Miocene of China sheds light on Neogene shifts in the past diversity and distribution of the Gypaetinae. Auk, 133:615-625
DOI URL |
[20] |
Li Z H, Clarke J A, Eliason C M et al., 2018. Vocal specialization through tracheal elongation in an extinct Miocene pheasant from China. Sci Rep, 8:8099
DOI URL |
[21] | Liang Z, Deng T. 2005. Age structure and habitat of the rhinocerosChilotherium during the Late Miocene in the Linxia Basin, Gansu, China. Vert PalAsiat, 43:219-230 |
[22] |
Ma Y, Li J, Fang X, 1998. Records of the climatic variation and pollen flora from the red beds at 30.6-5.0 Ma in Linxia district. Chinese Sci Bull, 43:301-304
DOI URL |
[23] | McLelland J, 1989. Larynx and trachea. In: King A S, Mclelland J eds. Form and Function in Birds. London, Inglaterra: Academic Press. 69-103 |
[24] | Musser G, Li Z H, Clarke J A, 2019. A new species of Eogruidae (Aves: Gruiformes) from the Miocene of the Linxia Basin, Gansu, China: evolutionary and climatic implications. Auk, 137:1-13 |
[25] |
Pawlicki R, Nowogrodzka-Zagórska M, 1998. Blood vessels and red blood cells preserved in dinosaur bones. Ann Anat, 180:73-77
PMID |
[26] |
Pawlicki R, Korbel A, Kubiak H, 1966. Cells, collagen fibrils and vessels in dinosaur bone. Nature, 211:655
DOI URL |
[27] |
Pesquero M D, Ascaso C, Alcalá L et al., 2010. A new taphonomic bioerosion in a Miocene lakeshore environment. Palaeogeogr, Palaeoclimatol, Palaeoecol, 295:192-198
DOI URL |
[28] | Pinhasi R, Mays S, 2008. Advances in Human Palaeopathology. Chichester: John Wiley & Sons. 1-389 |
[29] |
Qiang X, An Z, Song Y et al., 2011. New eolian red clay sequence on the western Chinese Loess Plateau linked to onset of Asian desertification about 25 Ma ago. Sci China Earth Sci, 54:136-144
DOI URL |
[30] | Qiu Z X, Qiu Z D, Deng T et al., 2013. Neogene land mammal stages/ages of China: toward the goal to establish an Asian land mammal stage/age scheme. In: Wang X M, Fortelius M, Flynn L eds. Fossil Mammals of Asia: Neogene Biostratigraphy and Chronology. New York: Columbia University Press. 29-90 |
[31] |
Schweitzer M H, Wittmeyer J L, Horner J R et al., 2005. Soft-tissue vessels and cellular preservation in Tyrannosaurus rex. Science, 307:1952-1955
PMID |
[32] |
Schweitzer M H, Suo Z, Avci R et al., 2007. Analyses of soft tissue from Tyrannosaurus rex suggest the presence of protein. Science, 316:277-280
PMID |
[33] | Schweitzer M H, Zheng W, Cleland T et al., 2014. A role for iron and oxygen chemistry in preserving soft tissues, cells and molecules from deep time. Proc R Soc Lond B, 281:20132741 |
[34] |
Turner-Walker G, 2019. Light at the end of the tunnels? The origins of microbial bioerosion in mineralised collagen. Palaeogeogr, Palaeoclimatol, Palaeoecol, 529:24-38
DOI URL |
[35] |
Turner-Walker G, Jans M, 2008. Reconstructing taphonomic histories using histological analysis. Palaeogeogr, Palaeoclimatol, Palaeoecol, 266:227-235
DOI URL |
[36] | Wang J Y, Fang X, Zhang W L et al., 2010a. Magnetostratigraphy and its implications of the Heilinding section, the Linxia Basin, Gansu Province, China. Marine Geol Quat Geol, 30:129-135 |
[37] |
Wang Y, Deng T, 2005. A 25 my isotopic record of paleodiet and environmental change from fossil mammals and paleosols from the NE margin of the Tibetan Plateau. Earth Planet Sci Lett, 236:322-338
DOI URL |
[38] |
Wang Y, Fang X, Zhang T et al., 2010b. Predominance of even carbon-numbered n-alkanes from lacustrine sediments in Linxia Basin, NE Tibetan Plateau: implications for climate change. Appl Geochem, 25:1478-1486
DOI URL |
[39] | Wang Y, Fang X, Zhang T et al., 2012. Distribution of biomarkers in lacustrine sediments of the Linxia Basin, NE Tibetan Plateau, NW China: significance for climate change. Sediment Geol, 243:108-116 |
[40] |
Wiemann J, Fabbri M, Yang T R et al., 2018. Fossilization transforms vertebrate hard tissue proteins into N-heterocyclic polymers. Nat Commun, 9:4741
DOI URL |
[41] |
Yin L, Zhu M, Knoll A H et al., 2007. Doushantuo embryos preserved inside diapause egg cysts. Nature, 446:661-663
DOI URL |
[42] |
Zhang W, Appel E, Wang J Y et al., 2019. New paleomagnetic constraints for Platybelodon and Hipparion faunas in the Linxia Basin and their ecological environmental implications. Global Planet Change, 176:71-83
DOI URL |
[43] |
Zhang Z, Sun J, 2011. Palynological evidence for Neogene environmental change in the foreland basin of the southern Tianshan range, northwestern China. Global Planet Change, 75:56-66
DOI URL |
[44] |
Zhang Z, Huang Y, James H F et al., 2012. Two Old World vultures from the middle Pleistocene of northeastern China and their implications for interspecific competition and biogeography of Aegypiinae. J Vert Paleont, 32:117-124
DOI URL |
[45] | Zheng D W, Zhang P Z, Wan J L et al., 2003. Late Cenozoic deformation subsequence in northeastern margin of Tibet—Detrital AFT records from Linxia Basin. Sci China Ser D: Earth Sci, 46:266-275 |
[46] |
Zheng D W, Zhang P Z, Wan J L et al., 2006. Rapid exhumation at ~ 8 Ma on the Liupan Shan thrust fault from apatite fission-track thermochronology: implications for growth of the northeastern Tibetan Plateau margin. Earth Planet Sci Lett, 248:198-208
DOI URL |
[1] | LI Chun-Xiao, CHEN Jin, WANG Shi-Qi. Reassessment of Trilophodon connexus Hopwood, 1935 and attributing it to the Choerolophodontidae . Vertebrata Palasiatica, 2024, 62(1): 33-46. |
[2] | Anek R. SANKHYAN, Olivier CHAVASSEAU. New suoid remains (Mammalia, Artiodactyla) from the Late Miocene of Haritalyangar, India . Vertebrata Palasiatica, 2024, 62(1): 69-84. |
[3] | Lawrence J. FLYNN, LI Qiang, Jay KELLEY, Nina G. JABLONSKI, JI Xue-Ping, Denise F. SU, WANG Xiao-Ming. A giant bamboo rat from the latest Miocene of Yunnan . Vertebrata Palasiatica, 2023, 61(4): 277-283. |
[4] | LI Shi-Jie, DENG Tao. Restudy of Rhinocerotini fossils from the Miocene Jiulongkou Fauna of China . Vertebrata Palasiatica, 2023, 61(3): 198-211. |
[5] | ZHANG Xiao-Xiao, YANG Xu, SUN Yan, WANG Hong-Jiang, YANG Rong, CHEN Shan-Qin, WANG Shi-Qi, LI Hong. New zygolophodonts from Miocene of China and their taxonomy . Vertebrata Palasiatica, 2023, 61(2): 142-160. |
[6] | WANG Ban-Yue. A new species of Pararhizomys (Tachyoryctoidinae, Muroidea) from Linxia Basin of Gansu Province . Vertebrata Palasiatica, 2022, 60(4): 271-277. |
[7] | Henry GALIANO, Z. Jack TSENG, Nikos SOLOUNIAS, WANG Xiao-Ming, QIU Zhan-Xiang, Stuart C. WHITE. A new aardwolf-line fossil hyena from Middle and Late Miocene deposits of Linxia Basin, Gansu, China . Vertebrata Palasiatica, 2022, 60(2): 81-116. |
[8] | ZHANG Xiao-Xiao, SUN Dan-Hui. A cuboid bone of a large Late Miocene elasmothere from Qingyang, Gansu, and its morphological significance . Vertebrata Palasiatica, 2022, 60(1): 29-41. |
[9] | WANG Qian, LIU Yan, WANG Li-Hua, Mikael FORTELIUS, ZHANG Zhao-Qun. An Upper Miocene “Hipparion fauna” locality sandwiched by basalt in Hanjiaying, Nei Mongol . Vertebrata Palasiatica, 2021, 59(2): 125-137. |
[10] | ZHANG Li-Min, DONG Wei, NI Xi-Jun, LI Qiang. Late Miocene micromammalian assemblage of Tuchengzi and its biochronological position in Neogene faunal sequence in central Nei Mongol, China . Vertebrata Palasiatica, 2021, 59(1): 45-63. |
[11] | QIU Zhu-Ding, WANG Xiao-Ming, LI Qiang, LI Lu, WANG Hong-Jiang, CHEN Hai-Feng. Late Miocene mammalian fauna of Halajin Hushu in Nei Mongol, China . Vertebrata Palasiatica, 2021, 59(1): 19-26. |
[12] | WANG Ban-Yue, QIU Zhan-Xiang. New Hystrix (Hystricidae, Rodentia) from the Neogene of Linxia Basin, Gansu, China . Vertebrata Palasiatica, 2020, 58(3): 204-220. |
[13] | WANG Shi-Qi, ZHANG Xiao-Xiao, LI Chun-Xiao. Reappraisal of Serridentinus gobiensis Osborn & Granger and Miomastodon tongxinensis Chen: the validity of Miomastodon . Vertebrata Palasiatica, 2020, 58(2): 134-158. |
[14] | WANG Ban-Yue, QIU Zhan-Xiang, LI Lü-Zhou. A Late Miocene Huerzelerimys (Rodentia: Muridae) skull from Hezheng, Gansu, China . Vertebrata Palasiatica, 2020, 58(2): 120-133. |
[15] | XIONG Wu-Yang. Basicranial morphology of Late Miocene Dinocrocuta gigantea (Carnivora: Hyaenidae) from Fugu, Shaanxi . Vertebrata Palasiatica, 2019, 57(4): 274-307. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||