Vertebrata Palasiatica ›› 2022, Vol. 60 ›› Issue (1): 1-28.DOI: 10.19615/j.cnki.2096-9899.211026
BI Dai-Ran1,2, WU Fei-Xiang1,3,*(), WANG Ning4, CHANG Mee-Mann1,2,3, FANG Geng-Yu1,2
Received:
2021-05-11
Online:
2022-01-20
Published:
2022-02-14
毕黛冉1,2, 吴飞翔1,3,*(), 王宁4, 张弥曼1,2,3, 房庚雨1,2
通讯作者:
*, wufeixiang@ivpp.ac.cn基金资助:
CLC Number:
BI Dai-Ran, WU Fei-Xiang, WANG Ning, CHANG Mee-Mann, FANG Geng-Yu. Revisit of Hsianwenia wui (Cyprinidae: Schizothoracinae) from the Pliocene of Qaidam Basin. Vertebrata Palasiatica, 2022, 60(1): 1-28.
毕黛冉, 吴飞翔, 王宁, 张弥曼, 房庚雨. 2022, 60(1): 1-28, 柴达木盆地上新世伍氏献文鱼(Cyprinidae: Schizothoracinae)形态学再研究. 古脊椎动物学报.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.vertpala.ac.cn/EN/10.19615/j.cnki.2096-9899.211026
Total length | 460-510 |
---|---|
Standard length | 417.7 |
Body depth | 77.4 |
Head length | 109.2 |
Head depth | 63.0 |
Snout length | 17.8 |
Postorbital length | 63.9 |
Distance between snout tip and dorsal fin origin | 231.3 |
Distance between dorsal fin and caudal fin base | 186.4 |
Distance between anal fin origin and pelvic fin insertion | 99.8 |
Distance between anal fin origin and caudal fin base | 75.1 |
Distance between pectoral fin insertion and pelvic fin insertion | 103.5 |
Dorsal fin base length | 46.4 |
Anal fin base length | 29.1 |
Caudal peduncle length | 47.0 |
Caudal peduncle depth | 24.3 |
Pectoral fin length | 84.5 |
Pelvic fin length | 61.8 |
Standard length/body depth | 5.4 |
Head length/head depth | 1.7 |
Standard length/head length | 3.8 |
Caudal peduncle length/caudal peduncle depth | 1.9 |
Total length | 460-510 |
---|---|
Standard length | 417.7 |
Body depth | 77.4 |
Head length | 109.2 |
Head depth | 63.0 |
Snout length | 17.8 |
Postorbital length | 63.9 |
Distance between snout tip and dorsal fin origin | 231.3 |
Distance between dorsal fin and caudal fin base | 186.4 |
Distance between anal fin origin and pelvic fin insertion | 99.8 |
Distance between anal fin origin and caudal fin base | 75.1 |
Distance between pectoral fin insertion and pelvic fin insertion | 103.5 |
Dorsal fin base length | 46.4 |
Anal fin base length | 29.1 |
Caudal peduncle length | 47.0 |
Caudal peduncle depth | 24.3 |
Pectoral fin length | 84.5 |
Pelvic fin length | 61.8 |
Standard length/body depth | 5.4 |
Head length/head depth | 1.7 |
Standard length/head length | 3.8 |
Caudal peduncle length/caudal peduncle depth | 1.9 |
[1] | Arratia G, Schultze H P, 1989. The composition of the caudal skeleton of teleosts (Actinopterygii: Osteichthyes). Zool J Linn Soc, 97:189-231 |
[2] | Cao W X, Chen Y Y, Wu Y F et al., 1981. Origin and evolution of Schizothoracine fishesin relation to the upheaval of the Qinghai-Xizang Plateau. In: Li Q F ed. Studies on the Period, Amplitude and Type of Uplift of the Qinghai-Xizang Plateau: the Comprehensive Scientific Expedition to the Qinghai-Xizang Plateau, Chinese Academy of Sciences. Beijing: Science Press. 118-130 |
[3] | Chang M M, Miao D S, 2016. Review of the Cenozoic fossil fishes from the Tibetan Plateau and their bearings on paleoenvironment. Chinese Sci Bull, 61:981-995 |
[4] | Chang M M, Wang X M, Liu H Z et al., 2008. Extraordinarily thick-boned fish linked to the aridification of the Qaidam Basin (northern Tibetan Plateau). Proc Nat Acad Sci USA, 105(36):13246-13251 |
[5] | Chang M M, Miao D S, Wang N, 2010. Ascent with modification: fossil fishes witnessed their own group’s adaptation to the uplift of the Tibetan Plateau during the late Cenozoic. Paper presented at the Darwin’s Heritage Today: Proceedings of the Darwin 200 Beijing International Conference. Beijing: Higher Education Press. 60-75 |
[6] | Chen G J, Liu J, 2007. First fossil barbin (Cyprinidae, Teleostei) from Oligocene of Qaidam Basin in northern Tibetan Plateau. Vert PalAsiat, 45:330-341 |
[7] | Chen X L, Yue P Q, Lin R D, 1984. Major groups within the family Cyprinidae and their phylogenetic relationships. Acta Zootaxon Sin, 9:424-440 |
[8] | Chen Y Y, Chen Y F, Liu H Z, 1996. Studies on the position of the Qinghai-Xizang Plateau region in zoogeographic divisions and its Eastern demarcation line. Acta Hydrobiol Sin, 20:97-103 |
[9] | Chu Y T, 1935. Comparative studies on the scales and on the pharyngeals and their teeth in Chinese cyprinids, with particular reference to taxonomy and evolution. Biol Bull St. John’s Univ, 2:1-290 |
[10] | Conway K W, 2011. Osteology of the South Asian Genus Psilorhynchus McClelland, 1839 (Teleostei: Ostariophysi: Psilorhynchidae), with investigation of its phylogenetic relationships within the order Cypriniformes. Zool J Linn Soc, 163:50-144 |
[11] | Conway K W, Chen W J, Mayden L R, 2008. The “Celestial Pearl danio” is a miniature Danio (s.s) (Ostariophysi: Cyprinidae): evidence from morphology and molecules. Zootaxa, 1686:1-28 |
[12] | Deng T, Wu F X, Su T et al., 2020. Tibetan Plateau: an evolutionary junction for the history of modern biodiversity. Sci China Earth Sci, 63(2):172-187 |
[13] | Diogo R, 2005. Morphological, Evolution, Aptations, Homoplasies, Constraints and Evolutionary Trends: Catfishes as a Case Study on General Plylogeny and Macroevolution. Enfield: Science Publishers. 1-491 |
[14] | Fang X M, Wu F L, Han W X et al., 2008. Plio-Pleistocene drying process of Asian inland: sporopollen and salinity records from Yahu Section in the Central Qaidam Basin. Quat Sci, 28(5):874-882 |
[15] | Fang X M, Dupont-Nivet G, Wang C S et al., 2020. Revised chronology of central Tibet uplift (Lunpola Basin). Sci Adv, 6: eaba7298 |
[16] | Gaudant J, 1979. “Pachylebias” crassicaudus (Agassiz) (Poisson téléostéen, Cyprinodontiforme), un constituent majeur de l’ichthyofaune du Messinien continental du Bassin Méditerranéen. Géobios, 12:47-73 |
[17] | Gaudant J, Guerrera F, Savelli D, 2015. Nouvelles données sur le Messinien de Méditerranée occidentale: Les gisements à Aphanius crassicaudus (Agassiz) (poisons téléostéens, cyprinodontiformes) des Marches (Italie). Geodinam Acta, 2(4):185-196 |
[18] | Gidmark N J, Tarrant J C, Brainerd E L, 2014. Convergence in morphology and masticatory function between the pharyngeal jaws of grass carp, Ctenopharyngodon idella, and oral jaws of amniote herbivores. J Exp Biol, 217:1925-1932 |
[19] | Kent-Corson M L, Ritts B D, Zhuang G S et al., 2009. Stable isotopic constraints on the tectonic, topographic, and climatic evolution of the northern margin of the Tibetan Plateau. Earth Planet Sci Lett, 282:158-166 |
[20] | Li L, Garzione C N, Pullen A et al., 2016. Early-middle Miocene topographic growth of the northern Tibetan Plateau: stable isotope and sedimentation evidence from the southwestern Qaidam Basin. Palaeogeogr Palaeoclimatol Palaeoecol, 461:201-213 |
[21] | Li L L, Wu C D, Fan C F et al., 2017. Carbon and oxygen isotopic constraints on paleoclimate and paleoelevation of the southwestern Qaidam basin, northern Tibetan Plateau. Geosci Front, 8(5):1175-1186 |
[22] | Meng Q W, Su J X, Li W D, 1987. Comparative Anatomy of Fishes. Beijing: Science Press. 1-403 |
[23] | Meunier F J, Gaudant J, 1987. Sur un cas de pachyostose chez un poisson du Miocéne terminal du basin méditerranéen, Aphanius crassicaudus (Agassiz), (Teleostei, Cyprinodontidae). C R Acad Sci Paris (Sér 2), 305:925-928 |
[24] | Miao Y F, Fang X M, Wu F L et al., 2013. Late Cenozoic continuous aridification in the western Qaidam Basin: evidence from sporopollen records. Clim Past, 9(4):1863-1877 |
[25] | Patterson C, 1975. The braincase of pholidophorid and leptolepid fishes, with a review of the actinopterygian braincase. Philos Trans R Soc Lond B Biol Sci, 269:275-579 |
[26] | Patterson C, 1977. Cartilage bones, dermal bones and membrane bones, or the exoskeleton versus the endoskeleton. In: Andrews S M ed. Problems in Vertebrate Evolution, Vol 4. London: Academic Press. 77-121 |
[27] | Patterson C, Johnson G D, 1995. The Intermuscular Bones and Ligaments of Teleostean Fishes. Washington: Smithsonian Institution Press. 1-83 |
[28] | Sibbing F A, 1982. Pharyngeal mastication and food transport in the carp (Cyprinus carpio L.): a cineradiographic and electromyographic study. J Morphol, 172(2):223-258 |
[29] | Song B W, Spicer R A, Zhang K X et al., 2020. Qaidam Basin leaf fossils show northeastern Tibet was high, wet and cool in the early Oligocene. Earth Planet Sci Lett, 537:1-10 |
[30] | Sorbini L, Tirapelle R, 1979. Messinian fossil fish of the Mediterranean. Palaeogeogr Palaeoclimatol Palaeoecol, 29:143-154 |
[31] | Su T, Farnsworth A, Spicer R A et al., 2019. No high Tibetan Plateau until the Neogene. Sci Adv, 5: eaav2189. |
[32] | Tao W J, Yang L, Mayden R L et al., 2019. Phylogenetic relationships of Cypriniformes and plasticity of pharyngeal teeth in the adaptive radiation of cyprinids. Sci China Life Sci, 62:553-565 |
[33] | Wang N, 2010. The Evolution of the Schizothoracinae During the Cenozoic and the Uplift of the Tibetan Plateau. Beijing: Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology. 1-106 |
[34] | Wang N, Chang M M, 2010. Pliocene cyprinids (Cypriniformes, Teleostei) from Kunlun Pass Basin, Northeastern Tibetan Plateau and their bearings on development of water system and uplift of the area. Sci China Earth Sci, 53:485-500 |
[35] | Wang N, Chang M M, 2012. Discovery of fossil Nemacheilids (Cypriniformes, Teleostei, Pisces) from the Tibetan Plateau, China. Sci China Earth Sci, 55:714-727 |
[36] | Wang N, Wu F X, 2015. New Oligocene cyprinid in the Central Tibetan Plateau documents the pre-uplift tropical lowlands. Ichthyol Res, 62(3):274-285 |
[37] | Wang X M, Qiu Z D, Li Q et al., 2007. Vertebrate paleontology, biostratigraphy, geochronology, and paleoenvironment of Qaidam Basin in northern Tibetan Plateau. Palaeogeogr Palaeoclimatol Palaeoecol, 254:363-385 |
[38] | Wang X M, Wang Y, Li Q et al., 2015. Cenozoic vertebrate evolution and paleoenvironment in Tibetan Plateau: progress and prospects. Gondwana Res, 27:1335-1354 |
[39] | Weitzman S H, 1962. The osteology of Brycon meeki, a generalized characid fish, with an osteological definition of the family. Stanford Ichthy Bull, 8:1-77 |
[40] | Wu F X, Miao D S, Chang M M et al., 2017. Fossil climbing perch and associated plant megafossils indicate a warm and wet Central Tibet during the late Oligocene. Sci Rep, 7:878 |
[41] | Wu F X, He D K, Fang G Y et al., 2019. Into Africa via Docked India: a fossil climbing perch from the Oligocene of Tibet helps solve the anabantid biogeographical puzzle. Sci Bull, 64(7):455-463 |
[42] | Wu Y F, Chen Y Y, 1980. Fossil cyprinid from the late Tertiary of North Xizang, China. Vert PalAsiat, 18:15-22 |
[43] | Wu Y F, Wu C Z, 1992. The Fishes of the Qinghai-Xizang Plateau. Chengdu: Sichuan Science & Technology Publishing House. 1-599 |
[44] | Yang L, Sado T, Hirt M V et al., 2015. Phylogeny and polyploidy: resolving the classification of cyprinine fishes (Teleostei: Cypriniformes). Mol Phylogenet Evol, 85:97-116 |
[45] | Yang T, Zhang L, Li W J et al., 2018. New schizothoracine from Oligocene of Qaidam Basin, northern Tibetan Plateau, China, and its significance. J Vert Paleont, 38:e1442840 |
[46] | Yin A, Dang Y Q, Zhang M et al., 2008. Cenozoic tectonic evolution of the Qaidam basin and its surrounding regions (Part 3): structural geology, sedimentation, and regional tectonic reconstruction. Geol Soc Am Bull, 120:847-876 |
[47] | Yu X J, Guo Z J, Fu S T, 2015. Endorheic or exorheic: differential isostatic effects of Cenozoic sediments on the elevations of the cratonic basins around the Tibetan Plateau. Terra Nova, 27:21-27 |
[48] | Zhuang G S, Brandon M T, Pagani M et al., 2014. Leaf wax stable isotopes from northern Tibetan Plateau: implications for uplift and climate since 15 Ma. Earth Planet Sci Lett, 390:186-198 |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||