Vertebrata Palasiatica ›› 2024, Vol. 62 ›› Issue (1): 33-46.DOI: 10.19615/j.cnki.2096-9899.230917
Previous Articles Next Articles
LI Chun-Xiao1,2, CHEN Jin2, WANG Shi-Qi2,*()
Received:
2022-05-26
Online:
2024-01-20
Published:
2024-01-17
Contact:
* wangshiqi@ivpp.ac.cn通讯作者:
* wangshiqi@ivpp.ac.cn基金资助:
CLC Number:
LI Chun-Xiao, CHEN Jin, WANG Shi-Qi. Reassessment of Trilophodon connexus Hopwood, 1935 and attributing it to the Choerolophodontidae. Vertebrata Palasiatica, 2024, 62(1): 33-46.
李春晓, 陈津, 王世骐. 2024, 62(1): 33-46, 间型三棱齿象(Trilophodon connexus Hopwood, 1935)属于豕棱齿象类而非嵌齿象. 古脊椎动物学报.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.vertpala.ac.cn/EN/10.19615/j.cnki.2096-9899.230917
Fig. 1 Terminology and measurements of gomphothere molars A. left m3 of “Choerolophodon” connexus, denoting the terminology of tooth crown; green color, pretrite crescentoids; blue color, pretrite central conules; B. molar crown measurements; C. molar height measurements. Abbreviations: L. length; H. height; Hpo. height of the posttrite side; Hpr. height of the pretrite side; W. width; W1, 2, …, 5. width of the 1st, 2nd, …, 5th loph(id)
Fig. 2 Mandible of “Choerolophodon” connexus and Gnathabelodon, in comparison with Gomphotherium A, B, G, K, O, Q. “Choerolophodon” connexus, IVPP V8567, from Halamagai Formation, Ulungur region: A. the original photo in Chen (1988:pl. 2, fig. 1); C, F, J, N. “C.” connexus, IVPP RV35015 (cast of the type specimen, PMU-M 3469), from Diaogou, Guanjiashan Formation (formerly Xianshuihe Formation), Xining Basin; D, H, L, P. Gnathabelodon thorpei, FHSU VP18, type specimen, from Ogallah, Kansas, U.S.A., late Clarendonian; note that the distal end of the mandibular symphysis is repaired by plaster; E, I, M. Gomphotherium tassyi, IVPP V22781, from Heijiagou, upper part of Zhangenbao Formation, Zhongning Region A-E. in dorsal view, showing the deep symphyseal groove and long or moderate distance bewteen the distal end of symphysis and the anterior end of the cheek tooth row; F-I. in left lateral view, showing the tube-like anterior mental foramen; J-M. in right medial view, showing long or moderate distance bewteen the distal end of symphysis and the anterior end of the cheek tooth row, as well as the thin distal end of symphysis; note that K-M were cut along the middle sagital plan from 3D models; N-Q. in distal view, showing the large mandibular channel (N), and thin bony wall of distal symphysis (P, Q); note that O (“C.” connexus, IVPP V8567) was cut from the same position as N (type), which has been broken. Abbreviations: amf. anterior mental foramen; i2. the second lower incisor (mandibular tusk); m2, 3. the second, third lower molar; mc. mandibular channel; rem. inc. alv. remnant of incisor alvoelus; st. symphyseal trough; thick/thin dis. sym. thick/thin distal symphysis; vas. imp. vascular impression for facial artery and vein. Scale bars without notations equal to 20 cm
Fig. 3 Cheek teeth of “Choerolophodon” connexus and Gnathabelodon A. “Choerolophodon” connexus, left m2 and m3, IVPP V8567; B. “C.” connexus, left m2 and m3, IVPP RV35015; C. “C.” connexus, right m2, IVPP V31357, from Halamagai Formation, Ulungur region; D. Gnathabelodon thorpei, left m2 and m3, FHSU VP18, type specimen; E. “C.” connexus, right M3, IVPP V8572, from Halamagai Formation, Ulungur region; F. “C.” connexus, left M3, IVPP RV35D49(cast of PMU-M 3045), from Diaogou, Xining Basin; G. Gn. thorpei, right M3, FHSU VP18 Abbreviations: li. lingual side; me. mesial side
no. | species | locality /region | locus | L | W | W1 | W2 | W3 | W4 | Hpo | W/L |
---|---|---|---|---|---|---|---|---|---|---|---|
*RV35D49 | “C.” connexus | Diaogou | l. M3 | 120.01 | 62.08 | 62.08 | 60.00 | 57.11 | 41.26(2) | 0.52 | |
*V8572 | “C.” connexus | Ulungur | r. M3 | 186.93 | 83.78 | 83.78 | 76.75 | 72.1 | 63.36 | 51.28(2) | 0.45 |
*V8573 | “C.” connexus | Ulungur | l. M3 | 170.72 | 82.74 | 82.74 | 77.1 | 72.31 | 50.86 | 50.41(3) | 0.48 |
*V8576 | “C.” connexus | Ulungur | l. M3 | 176.15 | 74.93 | 74.93 | 71.58 | 67.61 | 57.56 | 50.70(3) | 0.43 |
*V8574 | “C.” connexus | Ulungur | l. M3 | - | - | - | - | 67.24 | 59.95 | 57.15(3) | - |
VP18 | Gn. thorpei | Ogallah | r. M3 | 196.35 | 105.7 | 97.62 | 105.7 | 104.27 | 81.81 | 58.41+(3) | 0.54 |
*V8569 | “C.” connexus | Ulungur | l. dp4 | 71.83 | 37.82 | - | - | 37.82 | 33.12(2) | 0.53 | |
V31357 | “C.” connexus | Ulungur | r. m2 | 109.59 | 56.62 | 45.59 | 54.96 | 56.62 | 40.8+(3) | 0.52 | |
*V8567 | “C.” connexus | Ulungur | l. m2 | - | 56.93 | - | 52.02 | 56.93 | 33.32+(3) | - | |
*RV35015 | “C.” connexus | Diaogou | l. m2 | 103.49 | 45.13 | 38.97 | 45.13 | 50.23 | 0.44 | ||
V8567 | “C.” connexus | Ulungur | l. m3 | 158.44 | 65.19 | - | 63.71 | 65.19 | 53.66 | 45.62+(2) | 0.41 |
*RV35015 | “C.” connexus | Diaogou | l. m3 | 148.52 | 51.45 | 50.68 | 51.45 | - | - | 46.72+(2) | 0.35 |
*V18701 | “C.” connexus | Ulungur | l. m3 | 191.09 | 68.1 | 68.1 | 65.22 | 67.31 | 65.05 | 54.14(2) | 0.36 |
*V8571 | “C.” connexus | Ulungur | r. m3 | 172.02 | 76.04 | 68.37 | 76.04 | 67.32 | 52.38 | 58.51(2) | 0.44 |
*V8575 | “C.” connexus | Ulungur | l. m3 | 169.99 | 64.27 | 57.31 | 64.27 | 58.47 | 51.31 | 58.03(1) | 0.38 |
VP18 | Gn. thorpei | Ogallah | l. m3 | 209.85 | 91.15 | 80.65 | 89.44 | 91.15 | 78.91 | 66.37+(3) | 0.43 |
VP18 | Gn. thorpei | Ogallah | r. m3 | 198.82 | 91.53 | 79.96 | 90.03 | 91.53 | 74.24 | 67.45+(3) | 0.46 |
Table 1 Cheek teeth measurements of “Choerolophodon” connexus and Gnathabelodon thorpei (mm)
no. | species | locality /region | locus | L | W | W1 | W2 | W3 | W4 | Hpo | W/L |
---|---|---|---|---|---|---|---|---|---|---|---|
*RV35D49 | “C.” connexus | Diaogou | l. M3 | 120.01 | 62.08 | 62.08 | 60.00 | 57.11 | 41.26(2) | 0.52 | |
*V8572 | “C.” connexus | Ulungur | r. M3 | 186.93 | 83.78 | 83.78 | 76.75 | 72.1 | 63.36 | 51.28(2) | 0.45 |
*V8573 | “C.” connexus | Ulungur | l. M3 | 170.72 | 82.74 | 82.74 | 77.1 | 72.31 | 50.86 | 50.41(3) | 0.48 |
*V8576 | “C.” connexus | Ulungur | l. M3 | 176.15 | 74.93 | 74.93 | 71.58 | 67.61 | 57.56 | 50.70(3) | 0.43 |
*V8574 | “C.” connexus | Ulungur | l. M3 | - | - | - | - | 67.24 | 59.95 | 57.15(3) | - |
VP18 | Gn. thorpei | Ogallah | r. M3 | 196.35 | 105.7 | 97.62 | 105.7 | 104.27 | 81.81 | 58.41+(3) | 0.54 |
*V8569 | “C.” connexus | Ulungur | l. dp4 | 71.83 | 37.82 | - | - | 37.82 | 33.12(2) | 0.53 | |
V31357 | “C.” connexus | Ulungur | r. m2 | 109.59 | 56.62 | 45.59 | 54.96 | 56.62 | 40.8+(3) | 0.52 | |
*V8567 | “C.” connexus | Ulungur | l. m2 | - | 56.93 | - | 52.02 | 56.93 | 33.32+(3) | - | |
*RV35015 | “C.” connexus | Diaogou | l. m2 | 103.49 | 45.13 | 38.97 | 45.13 | 50.23 | 0.44 | ||
V8567 | “C.” connexus | Ulungur | l. m3 | 158.44 | 65.19 | - | 63.71 | 65.19 | 53.66 | 45.62+(2) | 0.41 |
*RV35015 | “C.” connexus | Diaogou | l. m3 | 148.52 | 51.45 | 50.68 | 51.45 | - | - | 46.72+(2) | 0.35 |
*V18701 | “C.” connexus | Ulungur | l. m3 | 191.09 | 68.1 | 68.1 | 65.22 | 67.31 | 65.05 | 54.14(2) | 0.36 |
*V8571 | “C.” connexus | Ulungur | r. m3 | 172.02 | 76.04 | 68.37 | 76.04 | 67.32 | 52.38 | 58.51(2) | 0.44 |
*V8575 | “C.” connexus | Ulungur | l. m3 | 169.99 | 64.27 | 57.31 | 64.27 | 58.47 | 51.31 | 58.03(1) | 0.38 |
VP18 | Gn. thorpei | Ogallah | l. m3 | 209.85 | 91.15 | 80.65 | 89.44 | 91.15 | 78.91 | 66.37+(3) | 0.43 |
VP18 | Gn. thorpei | Ogallah | r. m3 | 198.82 | 91.53 | 79.96 | 90.03 | 91.53 | 74.24 | 67.45+(3) | 0.46 |
Mandibular measurements | Gnathabelodon thorpei | Gomphotherium tassyi | “Choerolophodon” connexus | |
---|---|---|---|---|
FHSU VP18 | IVPP V22781 | IVPP V8567 | IVPP RV35015 | |
maximal length | 1490.8 | 1160.8 | 760.1 | 483.5+ |
symphyseal length | 587.4+ | 584.0 | 403.5+ | - |
maximal width | 596.1 | 492.7 | - | - |
posterior symphyseal width | 258.4 | 185.0 | 158.6 | 161.4 |
anterior symphyseal width | - | 114.6 | - | - |
maximum symphyseal width | 221.9 | 186.3 | - | - |
minimum symphyseal width | 176.5 | 108.1 | 83.4 | - |
maximum width of the rostral trough | 214.8 | - | - | - |
minimum width of rostral trough | 168.7 | - | 80.2 | 50.3 |
internal width between anterior alveoli (or grinding teeth if the alveoli are resorbed) | 89.4 | 76.4 | - | 60.2 |
maximum height of horizontal ramus (measurement taken perpendicular to the ventral border of the ramus) | 478.1 | 388.7 | - | 94.5 |
height of horizontal ramus taken at the root of the ascending branch (measurement as above) | 210.5 | 175.7 | - | 76.5 |
rostral height taken at the symphyseal border (measurement taken perpendicular to the ventral border of the symphyseal rostrum) | 207.5 | 120.5 | 98.5 | 61.2 |
rostral height taken at the tip of rostrum (measurement as above) | 169.0 | 98.4 | - | 47.0 |
maximum depth of the ascending ramus | 305.4 | 146.8 | - | 172.8 |
depth between gonion and the coronoid process | 310.8 | 172.4 | - | 191.1 |
mid-alveolar length taken on the buccal side between the anterior alveolus and the root of the ascending ramus | 335.8 | 243.0 | 245.4 | 236.0 |
rostral height taken at the tip of rostrum (measurement as above) | 169.0 | 98.4 | - | 47.0 |
maximum depth of the ascending ramus | 305.4 | 146.8 | - | 172.8 |
depth between gonion and the coronoid process | 310.8 | 172.4 | - | 191.1 |
mid-alveolar length taken on the buccal side between the anterior alveolus and the root of the ascending ramus | 335.8 | 243.0 | 245.4 | 236.0 |
Table 2 Mandibular measurements of “Choerolophodon” connexus, Gnathabelodon thorpei and Gomphotherium tassyi (mm)
Mandibular measurements | Gnathabelodon thorpei | Gomphotherium tassyi | “Choerolophodon” connexus | |
---|---|---|---|---|
FHSU VP18 | IVPP V22781 | IVPP V8567 | IVPP RV35015 | |
maximal length | 1490.8 | 1160.8 | 760.1 | 483.5+ |
symphyseal length | 587.4+ | 584.0 | 403.5+ | - |
maximal width | 596.1 | 492.7 | - | - |
posterior symphyseal width | 258.4 | 185.0 | 158.6 | 161.4 |
anterior symphyseal width | - | 114.6 | - | - |
maximum symphyseal width | 221.9 | 186.3 | - | - |
minimum symphyseal width | 176.5 | 108.1 | 83.4 | - |
maximum width of the rostral trough | 214.8 | - | - | - |
minimum width of rostral trough | 168.7 | - | 80.2 | 50.3 |
internal width between anterior alveoli (or grinding teeth if the alveoli are resorbed) | 89.4 | 76.4 | - | 60.2 |
maximum height of horizontal ramus (measurement taken perpendicular to the ventral border of the ramus) | 478.1 | 388.7 | - | 94.5 |
height of horizontal ramus taken at the root of the ascending branch (measurement as above) | 210.5 | 175.7 | - | 76.5 |
rostral height taken at the symphyseal border (measurement taken perpendicular to the ventral border of the symphyseal rostrum) | 207.5 | 120.5 | 98.5 | 61.2 |
rostral height taken at the tip of rostrum (measurement as above) | 169.0 | 98.4 | - | 47.0 |
maximum depth of the ascending ramus | 305.4 | 146.8 | - | 172.8 |
depth between gonion and the coronoid process | 310.8 | 172.4 | - | 191.1 |
mid-alveolar length taken on the buccal side between the anterior alveolus and the root of the ascending ramus | 335.8 | 243.0 | 245.4 | 236.0 |
rostral height taken at the tip of rostrum (measurement as above) | 169.0 | 98.4 | - | 47.0 |
maximum depth of the ascending ramus | 305.4 | 146.8 | - | 172.8 |
depth between gonion and the coronoid process | 310.8 | 172.4 | - | 191.1 |
mid-alveolar length taken on the buccal side between the anterior alveolus and the root of the ascending ramus | 335.8 | 243.0 | 245.4 | 236.0 |
[1] | Barbour E H, Sternberg G F, 1935. Gnathabelodon thorpei, gen. et sp. nov., a new mud-grubbing mastodon. Bull Nebr State Mus, 42: 395-403 |
[2] | Chen G F, 1988. Mastodont remains from the Miocene of Junggar Basin in Xinjiang. Vert PalAsiat, 26: 265-277 |
[3] | Chen G F, 2021. Basal synapsids and mammals:hyracoidea, proboscidea, etc. In: Qiu Z X, Li C K eds. Palaeovertebrata Sinica. Beijing: Science Press. 1-231 |
[4] | Chow M C, Chang Y P, 1974. Chinese Fossil Elephantoids. Beijing: Science Press. 1-74 |
[5] | Gaziry A W, 1987. New mammals from the Jabal Zaltan site, Libya. Senckenbergiana Lethaea, 68: 69-89 |
[6] | Hopwood A T, 1935. Fossil Proboscidea from China. Palaeontol Sin, Sér C, 9: 1-108 |
[7] |
Konidaris G E, Koufos G D, Kostopoulos D S et al., 2016. Taxonomy, biostratigraphy and palaeoecology of Choerolophodon (Proboscidea, Mammalia) in the Miocene of SE Europe-SW Asia: implications for phylogeny and biogeography. J Syst Palaeont, 14: 1-27
DOI URL |
[8] | Li, C X, Wang S Q, Hao C L et al., 2018. A textual research of the early localities of fossil Gomphotherium in the Xining Basin with relevant stratigraphic correlation. J Stratigr, 42: 313-324 |
[9] | Li C X, Wang S Q, Mothé D et al., 2019. New fossils of Early and Middle Miocene Choerolophodon from northern China reveal a Holarctic distribution of Choerolophodontidae. J Vert Paleont, 39: e1618864 |
[10] | Li C X, Wang S Q, Yang Q, 2022. Discovery of a primitive Gomphotherium from the Early Miocene of northern China and its biochronology and palaeobiogeography significance. Hist Biol, doi: 10.1080/08912963.2022.2077106 |
[11] |
MacInnes D G, 1942. Miocene and post-Miocene Proboscidea from east Africa. Trans Zool Soc London, 25: 33-106
DOI URL |
[12] | Maglio V J, 1974. A new proboscidean from the Late Miocene of Kenya. Palaeontology, 17: 699-705 |
[13] | Matthews S C, 1973. Notes on open nomenclature and on synonymy lists. Palaeontology, 16: 713-719 |
[14] | Osborn H F, 1936. Proboscidea: a Monograph of the Discovery, Evolution, Migration and Extinction of the Mastodonts and Elephants of the World. New York: The American Museum Press. 1-802 |
[15] |
Pickford M, 2001. Afrochoerodon nov. gen. kisumuensis (MacInnes) (Proboscidea, Mammalia) from Cheparawa, Middle Miocene, Kenya. Ann Paléont, 87: 99-117
DOI URL |
[16] | Qiu Z D, Li C K, Wang S J, 1981. Miocene mammalian fossils from Xining Basin, Qinghai. Vert PalAsiat, 19: 156-173 |
[17] |
Sanders W J, Miller E R, 2002. New proboscideans from the Early Miocene of Wadi Moghara, Egypt. J Vert Paleont, 22: 388-404
DOI URL |
[18] | Sanders W J, Gheerbrant E, Harris J M et al., 2010. Proboscidea. In: Werdelin L, Sanders W J eds.eds. Cenozoic Mammals of Africa. Berkeley: University of California Press. 161-251 |
[19] |
Sellards E H, 1940. New Pliocene mastodon. Bull Geol Soc Am, 51: 1659-1664
DOI URL |
[20] |
Shoshani J, Tassy P, 2005. Advances in proboscidean taxonomy & classification, anatomy & physiology, and ecology & behavior. Quat Int, 126-128: 5-20
DOI URL |
[21] | Tassy P, 1983. Les Elephantoidea Miocènes du Plateau du Potwar, Groups de Siwalik, Pakistan. Ann Paléont, 69: 99-136, 235-297 |
[22] | Tassy P, 1985. La place des mastodontes Miocènes de l’ancien monde dans la phylogénie des Proboscidea (Mammalia): hypothèses et conjectures. Vol I-III. Thèse Doctorat ès Sciences. Paris: Université Pierre et Marie Curie. 1-861 |
[23] |
Tassy P, 2014. L'odontologie de Gomphotherium angustidens (Cuvier, 1817) (Proboscidea, Mammalia): données issues du gisement d'En Péjouan (Miocène moyen du Gers, France). Geodiversitas, 36(1): 35-115
DOI URL |
[24] | Tobien H, 1973. On the evolution of mastodonts (Proboscidea, Mammalia), part 1: the bunodont trilophodont groups. Notizbl Hess L-Amt Bodenforsch, 101: 202-276 |
[25] | Tobien H, 1980. A note on the skull and mandible of a new choerolophodont mastodont (Proboscidea, Mammalia) from the Middle Miocene of Chios (Aegean Sea, Greece). In: Jacobs L ed. Aspects of Vertebrate History: Essays in Honor of Edwin Harris Colbert. Flagstaff: Museum of Northern Arizona Press. 299-307 |
[26] | Tobien H, Chen G F, Li Y Q, 1986. Mastodonts (Proboscidea, Mammalia) from the Late Neogene and Early Pleistocene of the People’s Republic of China, part I: historical account: the genera Gomphotherium, Choerolophodon, Synconolophus, Amebelodon, Platybelodon, Sinomastodon. Mainzer Geowiss Mitt, 15: 119-181 |
[27] | Wang S Q, 2014. Gomphotherium inopinatum, a basal Gomphotherium species from the Linxia Basin, China, and other Chinese members of the genus. Vert PalAsiat, 52: 183-200 |
[28] |
Wang S Q, 2021. The anthracotheres from northern Junggar Basin and their palaeoclimatic significance in relation to the Tibetan Plateau. Palaeobio Palaeoenv, 101: 839-852
DOI |
[29] |
Wang S Q, Deng T, 2011. The first Choerolophodon (Proboscidea, Gomphotheriidae) skull from China. Sci China Earth Sci, 54: 1326-1337
DOI URL |
[30] |
Wang S Q, Duangkrayom J, Yang X W, 2015. Occurrence of the Gomphotherium angustidens group in China, based on a revision of Gomphotherium connexum (Hopwood, 1935) and Gomphotherium shensiensis Chang and Zhai, 1978: continental correlation of Gomphotherium species across the Palearctic. Paläont Z, 89: 1073-1086
DOI URL |
[31] |
Wang S Q, Li Y, Duangkrayom J et al., 2017. A new species of Gomphotherium (Proboscidea, Mammalia) from China and the evolution of Gomphotherium in Eurasia. J Vert Paleont, 37: 1-15
DOI URL |
[32] | Wang S Q, Zhang X X, Li C X, 2020. Reappraisal of Serridentinus gobiensis Osborn & Granger and Miomastodon tongxinensis Chen: the validity of Miomastodon. Vert PalAsiat, 58: 134-158 |
[33] | Wang S Q, Ye J, Meng J et al., 2022. Sexual selection promotes giraffoid head-neck evolution and ecological adaptation. Science, 376: 6597 |
[34] |
Wang S Q, Li C X, Li Y et al., 2023. Gomphotheres from Linxia Basin, China, and their significance in biostratigraphy, biochronology, and paleozoogeography. Palaeogeogr Palaeoclimat Palaeoecol, 613: 111405
DOI URL |
[35] |
Wu Y, Deng T, Hu Y W et al., 2018. A grazing Gomphotherium in Middle Miocene Central Asia, 10 million years prior to the origin of the Elephantidae. Sci Rep, 8: 7640
DOI |
[36] | Zhai R J, 1961. On a collection of Neogene mammals from Ching-An, eastern Kansu. Vert PalAsiat, (3): 262-268 |
[1] | Muhammad ILYAS, LI Qiang, SHI Qin-Qin, NI Xi-Jun. The Late Miocene ‘ovibovin’ bovids in Eurasia . Vertebrata Palasiatica, 2024, 62(4): 262-290. |
[2] | Anek R. SANKHYAN, Olivier CHAVASSEAU. New suoid remains (Mammalia, Artiodactyla) from the Late Miocene of Haritalyangar, India . Vertebrata Palasiatica, 2024, 62(1): 69-84. |
[3] | Lawrence J. FLYNN, LI Qiang, Jay KELLEY, Nina G. JABLONSKI, JI Xue-Ping, Denise F. SU, WANG Xiao-Ming. A giant bamboo rat from the latest Miocene of Yunnan . Vertebrata Palasiatica, 2023, 61(4): 277-283. |
[4] | LI Shi-Jie, DENG Tao. Restudy of Rhinocerotini fossils from the Miocene Jiulongkou Fauna of China . Vertebrata Palasiatica, 2023, 61(3): 198-211. |
[5] | ZHANG Xiao-Xiao, YANG Xu, SUN Yan, WANG Hong-Jiang, YANG Rong, CHEN Shan-Qin, WANG Shi-Qi, LI Hong. New zygolophodonts from Miocene of China and their taxonomy . Vertebrata Palasiatica, 2023, 61(2): 142-160. |
[6] | WANG Ban-Yue. A new species of Pararhizomys (Tachyoryctoidinae, Muroidea) from Linxia Basin of Gansu Province . Vertebrata Palasiatica, 2022, 60(4): 271-277. |
[7] | Henry GALIANO, Z. Jack TSENG, Nikos SOLOUNIAS, WANG Xiao-Ming, QIU Zhan-Xiang, Stuart C. WHITE. A new aardwolf-line fossil hyena from Middle and Late Miocene deposits of Linxia Basin, Gansu, China . Vertebrata Palasiatica, 2022, 60(2): 81-116. |
[8] | ZHANG Xiao-Xiao, SUN Dan-Hui. A cuboid bone of a large Late Miocene elasmothere from Qingyang, Gansu, and its morphological significance . Vertebrata Palasiatica, 2022, 60(1): 29-41. |
[9] | WANG Shi-Qi, LI Chun-Xiao, ZHANG Xiao-Xiao. On the scientific names of mastodont taxa: nomenclature, Chinese translation, and taxonomic problems . Vertebrata Palasiatica, 2021, 59(4): 295-332. |
[10] | LI Zhi-Heng, Alida M. BAILLEUL, Thomas A. STIDHAM, WANG Min, DENG Tao. Exceptional preservation of an extinct ostrich from the Late Miocene Linxia Basin of China . Vertebrata Palasiatica, 2021, 59(3): 229-244. |
[11] | WANG Qian, LIU Yan, WANG Li-Hua, Mikael FORTELIUS, ZHANG Zhao-Qun. An Upper Miocene “Hipparion fauna” locality sandwiched by basalt in Hanjiaying, Nei Mongol . Vertebrata Palasiatica, 2021, 59(2): 125-137. |
[12] | ZHANG Li-Min, DONG Wei, NI Xi-Jun, LI Qiang. Late Miocene micromammalian assemblage of Tuchengzi and its biochronological position in Neogene faunal sequence in central Nei Mongol, China . Vertebrata Palasiatica, 2021, 59(1): 45-63. |
[13] | QIU Zhu-Ding, WANG Xiao-Ming, LI Qiang, LI Lu, WANG Hong-Jiang, CHEN Hai-Feng. Late Miocene mammalian fauna of Halajin Hushu in Nei Mongol, China . Vertebrata Palasiatica, 2021, 59(1): 19-26. |
[14] | WANG Ban-Yue, QIU Zhan-Xiang. New Hystrix (Hystricidae, Rodentia) from the Neogene of Linxia Basin, Gansu, China . Vertebrata Palasiatica, 2020, 58(3): 204-220. |
[15] | WANG Shi-Qi, ZHANG Xiao-Xiao, LI Chun-Xiao. Reappraisal of Serridentinus gobiensis Osborn & Granger and Miomastodon tongxinensis Chen: the validity of Miomastodon . Vertebrata Palasiatica, 2020, 58(2): 134-158. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||