[1] |
Alexandros S, 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30:1312-1313
DOI
URL
PMID
|
[2] |
Aurelien G, Morten R M, Thomas P G et al., 2011. mapDamage: testing for damage patterns in ancient DNA sequences. Bioinformatics, 27:2153-2155
DOI
URL
PMID
|
[3] |
Cai B Q, Yin J C, 1992. Late Pleistocene fossil mammals from Qinggang, Heilongjiang Province. Bull Chinese Acad Geol Sci, 25:131-138
|
[4] |
Cognato A I, Vogler A P, 2001. Exploring data interaction and nucleotide alignment in a multiple gene analysis of Ips (Coleoptera: Scolytinae). Syst Biol, 50:758-780
DOI
URL
PMID
|
[5] |
Dong W, Li Z Y, 2009. New cervids (Artiodactyla, Mammalia) from the Late Pleistocene of Lingjing Site in Henan Province, China. Acta Anthrop Sin, 28:319-326
|
[6] |
Dong W, Liu W H, Zhang L M et al., 2018. New materials of Cervidae (Artiodactyla, Mammalia) from Tuchengzi of Huade, Nei Mongol, North China. Vert PalAsiat, 56:157-175
|
[7] |
Emerson B C, Tate M L, 1993. Genetic analysis of evolutionary relationships among deer (Subfamily Cervinae). J Hered, 84:266-273
URL
PMID
|
[8] |
Geist V, 1998. Deer of the World: Their Evolution, Behaviour, and Ecology. Mechanicsburg: Stackpole Book. 1-421
|
[9] |
Groves C P, Grubb P, 1987. Relationships of living deer. In: Christen M W ed. Biology and Management of the Cervidae. Washington, DC: Smithsonian Institution Press. 20-59
|
[10] |
Grubb P, 1993. Artiodactyla: Cervidae. In: Wilson D E, Reeder D M eds. Mammal Species of the World: A Taxonomic and Geographic Reference. Washington, DC: Smithsonian Institution Press. 384-392
|
[11] |
Hall T A, 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser, 41:95-98
|
[12] |
Hofreiter M, Paijmans J, Goodchild H et al., 2014. The future of ancient DNA: technical advances and conceptual shifts. BioEssays, 37: 10. 1002/bies. 201400160
|
[13] |
Korneliussen T S, Albrechtsen A, Nielsen R, 2014. ANGSD: analysis of next generation sequencing. BMC Bioinformatics, 15:356
DOI
URL
PMID
|
[14] |
Li H, Durbin R, 2010. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics, 26:589-595
DOI
URL
PMID
|
[15] |
Li H, Handsaker B, Wysoker A et al., 2009. The sequence alignment/map format and SAMtools. Bioinformatics, 25:2078-2079
URL
PMID
|
[16] |
Li M, Wang X M, Sheng H L et al., 1998. Origin and genetic diversity of four subspecies of red deer (Cervus elaphus). Zool Res, 19:177-183
|
[17] |
Liu H T, Dong Y M, Wang L et al., 2017. Research progress on taxonomy and phylogeny of deer in China. Chinese J Wildlife, 38:514-523
|
[18] |
Liu X H, Wang Y Q, Liu Z Q et al., 2003. Phylogenetic relationships of Chinese brown frogs (Rana) based on sequence of mitochondrial cytochrome b gene. Zool Res, 22:345-350
|
[19] |
Ludt C J, Schroeder W, Rottmann O et al., 2004. Mitochondrial DNA phylogeography of red deer (Cervus elaphus). Mol Phylogenet Evol, 31:1064-1083
DOI
URL
PMID
|
[20] |
Martin M, 2011. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J, 17:10-12
|
[21] |
Matthias M, Martin K, 2010. Illumina sequencing library preparation for highly multiplexed target capture and sequencing. Cold Spring Harbor Protoc, 2010: pdb. prot5448
|
[22] |
Muhmut H, Masuda R, Onuma M et al., 2002. Molecular phylogeography of the red deer (Cervus elaphus) populations in Xinjiang of China: comparison with other Asian, European and North American populations. Zool Sci, 19:485-495
|
[23] |
Neitzel H, 1987. Chromosome evolution of Cervidae: karyotypic and molecular aspects. In: Obe G, Basler A eds. Cytogenetics: Basic and Applied Aspects. Berlin/Heidelberg: Springer. 90-112
|
[24] |
Polziehn R O, Strobeck C, 2002. A phylogenetic comparison of red deer and wapiti using mitochondrial DNA. Mol Phylogenet Evol, 22:342-356
DOI
URL
PMID
|
[25] |
Qiao F J, Li J L, Gao H et al., 2019. Molecular phylogenetics of the Alashan red deer (Cervus elaphus alxaicus) based on Cyt b DNA. Chinese J Wildlife, 40:307-311
|
[26] |
|
[27] |
Randi E, Mucci N, Claro H F et al., 2001. A mitochondrial DNA control region phylogeny of the Cervinae: speciation in Cervus and implications for conservation. Anim Conserv Forum, 4:1-11
|
[28] |
Rohland N, Hofreiter M, 2007a. Comparison and optimization of ancient DNA extraction. Bio-Techniques, 42:343-352
|
[29] |
Rohland N, Hofreiter M, 2007b. Ancient DNA extraction from bones and teeth. Nat Protoc, 2:1756-1762
DOI
URL
PMID
|
[30] |
Sawyer S, Krause J, Guschanski K et al., 2012. Temporal patterns of nucleotide misincorporations and DNA fragmentation in ancient DNA. PloS ONE, 7:e34131
DOI
URL
PMID
|
[31] |
Sheng H L, 1992. The Deer in China. Shanghai: East China Normal University Press. 1-251
|
[32] |
Tu J F, Xing X M, Xu J P et al., 2012. Sequence difference of mitochondrial DNA control region and genetic differentiation of Cervinae in China. J Anhui Agr Sci, 40:669-672
|
[33] |
Wang X M, Li M, Tang S X et al., 1999. Study on the resources and protection status of cloven hooves in Helan Mountain. Chinese J Zool, 34:26-29
|
[34] |
Wang Z R, Du R F, 1983. Karyotypes of Cervidae and their evolution. Acta Zool Sin, 29:214-222
|