Vertebrata Palasiatica ›› 2023, Vol. 61 ›› Issue (3): 198-211.DOI: 10.19615/j.cnki.2096-9899.230630
Previous Articles Next Articles
LI Shi-Jie1,2, DENG Tao1,2,*()
Received:
2023-04-11
Online:
2023-07-20
Published:
2023-07-25
通讯作者:
* dengtao@ivpp.ac.cn基金资助:
CLC Number:
LI Shi-Jie, DENG Tao. Restudy of Rhinocerotini fossils from the Miocene Jiulongkou Fauna of China. Vertebrata Palasiatica, 2023, 61(3): 198-211.
李世杰, 邓涛. 2023, 61(3): 198-211, 河北磁县九龙口中中新世动物群中真犀的再研究. 古脊椎动物学报.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.vertpala.ac.cn/EN/10.19615/j.cnki.2096-9899.230630
Measurement | Left | Right |
---|---|---|
Distance between nasal tip and bottom of nasal notch | 62.73 | 75.08 |
Distance between nasal notch and orbit | 110.16 | 121.66 |
Width of nasal base | 70.71 | |
Cranial height in front of M1 | 136.91 | 142.27 |
Width of palate in front of M1 | 120.06 | |
DP1-4 L | 118.82 | 119.03 |
I1 L (alveolus) | 35.13 | 33.24 |
I1 W (alveolus) | 17.82 | 17.94 |
DP1 L | 19.72 | 21.46 |
DP1 W | 18.13 | 20.25 |
DP2 L | >29.15 | 27.57 |
DP2 W | 30.17 | 30.35 |
DP3 L | 35.62 | 37.38 |
DP3 W | 36.99 | 38.27 |
DP4 L | 43.02 | 41.44 |
DP4 W | 42.21 | 40.89 |
M1 L | 49.35 | 49.2 |
M1 W | 49.41 | 45.91 |
Distance between posterior borders of symphysis and ascending ramus | 217.92 | |
Height of horizontal ramus in front of dp2 | 59.75 | |
Height of horizontal ramus in front of dp3 | 61.13 | |
Height of horizontal ramus in front of dp4 | 64.61 | |
Height of horizontal ramus in front of m1 | 56.15 | 63.62 |
Width of symphysis | 41.11 | |
Antero-posterior diameter of ascending ramus | 98.85 | |
Transverse diameter of condyle | >44.24 | |
Height at condyle | >142.67 | |
Height at coronoid process | 169.79 | |
dp1-4 L | 114.57 | 109.74 |
di1 L | 6.84 | 6.59 |
di1 W | 6.68 | 6.43 |
dp1 L | 20.82 | 14.69 |
dp1 W | 11.03 | 9.28 |
dp2 L | 20.49 | 21.89 |
dp2 W | 15.52 | 14.4 |
dp3 L | 35.03 | 34.88 |
dp3 AW | 18.11 | 17.24 |
dp3 PW | 22.67 | 19.71 |
dp4 L | 35.6 | 35.75 |
dp4 AW | 24.22 | 19.85 |
dp4 PW | 27.51 | 22.7 |
m1 L | 41.3 | >39.59 |
m1 AW | 21.78 | 22.96 |
m1 PW | 27.21 | 22.27 |
Table 1 Measurements of Lartetotherium cixianensis, Jiulongkou (mm)
Measurement | Left | Right |
---|---|---|
Distance between nasal tip and bottom of nasal notch | 62.73 | 75.08 |
Distance between nasal notch and orbit | 110.16 | 121.66 |
Width of nasal base | 70.71 | |
Cranial height in front of M1 | 136.91 | 142.27 |
Width of palate in front of M1 | 120.06 | |
DP1-4 L | 118.82 | 119.03 |
I1 L (alveolus) | 35.13 | 33.24 |
I1 W (alveolus) | 17.82 | 17.94 |
DP1 L | 19.72 | 21.46 |
DP1 W | 18.13 | 20.25 |
DP2 L | >29.15 | 27.57 |
DP2 W | 30.17 | 30.35 |
DP3 L | 35.62 | 37.38 |
DP3 W | 36.99 | 38.27 |
DP4 L | 43.02 | 41.44 |
DP4 W | 42.21 | 40.89 |
M1 L | 49.35 | 49.2 |
M1 W | 49.41 | 45.91 |
Distance between posterior borders of symphysis and ascending ramus | 217.92 | |
Height of horizontal ramus in front of dp2 | 59.75 | |
Height of horizontal ramus in front of dp3 | 61.13 | |
Height of horizontal ramus in front of dp4 | 64.61 | |
Height of horizontal ramus in front of m1 | 56.15 | 63.62 |
Width of symphysis | 41.11 | |
Antero-posterior diameter of ascending ramus | 98.85 | |
Transverse diameter of condyle | >44.24 | |
Height at condyle | >142.67 | |
Height at coronoid process | 169.79 | |
dp1-4 L | 114.57 | 109.74 |
di1 L | 6.84 | 6.59 |
di1 W | 6.68 | 6.43 |
dp1 L | 20.82 | 14.69 |
dp1 W | 11.03 | 9.28 |
dp2 L | 20.49 | 21.89 |
dp2 W | 15.52 | 14.4 |
dp3 L | 35.03 | 34.88 |
dp3 AW | 18.11 | 17.24 |
dp3 PW | 22.67 | 19.71 |
dp4 L | 35.6 | 35.75 |
dp4 AW | 24.22 | 19.85 |
dp4 PW | 27.51 | 22.7 |
m1 L | 41.3 | >39.59 |
m1 AW | 21.78 | 22.96 |
m1 PW | 27.21 | 22.27 |
Fig. 1 Comparison of craniums in dorsal (A1, B1, C1), ventral (A2, B2, C2), and lateral (A3, B3, C3) views A. Lartetotherium cf. L. sansaniense CSIC RE927, La Retama, Spain (Cerde?o, 1996a) (A3 reversed);B. L. cixianensis IVPP V4833 (plaster at nose is marked in red), Jiulongkou, Hebei, northern China;C. Dicerorhinus sumatrensis AMNH M173576. Scale bars = 5 cm
Fig. 2 Comparison of premaxillae in ventral view A. Lartetotherium cixianensis IVPP V4841, Jiulongkou, Hebei, northern China;B. Dicerorhinus sumatrensis V2877, Liucheng Gigantopithecus Cave, Guangxi, southern China;C. D. sumatrensis MNHN A7965
Fig. 3 Photographs of the mandible of Lartetotherium cixianensis IVPP V4833, Jiulongkou, Hebei, northern China A. anterior view, showing the di1; B, C, E. medial (B), ventral (C) and lateral (E) views of the left side; D. lateral view of the right side
Fig. 4 Nasal notch of some Rhinocerotini A. Dicerorhinus sumatrensis (M1 just erupted) AMNH M173576; B. D. sumatrensis MNHN A7965;C. Pliorhinus ringstroemi (DP4 erupted) HMV2049; D. P. ringstroemi HMV1115;E. Chilotherium wimani (DP4 just erupted) HMV2057; F. C. wimani HMV2058. Not to scale
[1] | Antoine P O, Saraç G, 2005. Rhinocerotidae (Mammalia, Perissodactyla) from the late Miocene of Akkasdagi, Turkey. Geodiversitas, 27: 601-632 |
[2] | Antoine P O, Bulot C, Ginsburg L, 2000. Les rhinocerotides (Mammalia, Perissodactyla) de l'Orleanien des bassins de la Garonne et de la loire (France): interet biostratigraphique. Ser IC R Acad Sci, Ser IIA: Earth Planet Sci, 330: 571-576 |
[3] |
Antoine P O, Reyes M C, Amano N et al., 2022. A new rhinoceros clade from the Pleistocene of Asia sheds light on mammal dispersals to the Philippines. Zool J Linn Soc Lond, 194: 416-430
DOI URL |
[4] | Cerdeño E, 1996a. Lartetotherium (Rhinocerotidae) en la fauna con Hispanotherium del Mioceno Medio de La Retama, Cuenca, España. Span J Paleontol, 11: 193-197 |
[5] | Cerdeño E, 1996b. Rhinocerotidae from the middle Miocene of the Tung-gur formation, Inner Mongolia (China). Am Mus Novit, 3184: 1-43 |
[6] | Chen G F, Wu W Y, 1976. Mammalian fossils from the Miocene Jiulongkou locality, Cixian County, Heibei Province. Vert PalAsiat, 14: 6-15 |
[7] | Chen S K, Liu Y, 2013. The taxonomic status of “Macrotherium cf. M. brevirostris” from the Middle Miocene of Jiulongkou, Cixian County, Hebei Province. Vert PalAsiat, 51: 205-210 |
[8] | Chen S K, Pang L B, Yan Y L et al., 2021. First discovery of Dicerorhinus sumatrensis from Yanjinggou provides insights into the Pleistocene Rhinocerotidae of South China. Acta Geol Sin - Engl, 95: 1065-1072 |
[9] | Colbert E H, 1934. A new rhinoceros from the Siwalik beds of India. Am Mus Novit, 749: 1-14 |
[10] | Colbert E H, 1935. Siwalik mammals in the American Museum of Natural History. Trans Am Philos Soc, New Ser, 26: 1-401 |
[11] |
Deng T, 2003. New material of Hispanotherium matritense (Rhinocerotidae, Perissodactyla) from Laogou of Hezheng County (Gansu, China), with special reference to the Chinese Middle Miocene elasmotheres. Geobios-Lyon, 36: 141-150
DOI URL |
[12] |
Deng T, 2004. A new species of the rhinoceros Alicornops from the Middle Miocene of the Linxia Basin, Gansu, China. Palaeontology, 47: 1427-1439
DOI URL |
[13] | Deng T, 2006. Chinese Neogene mammal biochronology. Vert PalAsiat, 44: 143-163 |
[14] | Deng T, 2015. Chinese Neogene Rhinoceroses. Shanghai: Shanghai Scientific and Technical Publishers. 1-154 |
[15] |
Deng T, Wang X, Fortelius M et al., 2011. Out of Tibet: Pliocene wooly rhino suggests high-plateau origin of ice age megaherbivores. Science, 333: 1285-1288
DOI PMID |
[16] | Filhol H, 1891. Études sur les mammifères fossiles de Sansan. Ann Sci Geol, 21: 1-319 |
[17] |
Fjeldsa J, Lovett J, 1997. Geographical patterns of old and young species in African forest biota: the significance of specific montane areas as evolutionary centers. Biodivers Conserv, 6: 325-346
DOI URL |
[18] | Geraads D, 2010. Rhinocerotidae. In: Werdelin L, Sanders W J eds. Cenozoic Mammals of Africa. Oakland: University of California Press. 675-690 |
[19] | Giaourtsakis I X, 2022. The fossil record of rhinocerotids (Mammalia: Perissodactyla: Rhinocerotidae) in Greece. In: Vlachos E ed. Fossil Vertebrates of Greece Vol 2. Cham: Springer, Cham. 409-500 |
[20] | Ginsburg L, 1974. Les Rhinocérotidés du Miocène de Sansan (Gers). C R Acad Sci, 278: 597-600 |
[21] | Ginsburg L, Bulot C, 1984. Les Rhinocerotidae (Perissodactyla, Mammalia) du Miocène de Bézian à La Romieu (Gers). Bull Mus Natl Hist Nat, 6: 353-377 |
[22] | Heissig K, 1972. Paläontologische und geologische Untersuchungen im Tertiär von Pakistan - 5. Rhinocerotidae (Mammalia) aus den unteren und mittleren Siwalik-Schichten. Abh Akad Wiss Math-Phys Kl, Folge, 152: 1-112 |
[23] | Heissig K, 1999. Family Rhinocerotidae. In: Rössner G E, Heissig K eds. The Miocene Land Mammals of Europe. München: Verlag Dr. Friedrich Pfeil. 175-188 |
[24] | Heissig K, 2012. Les Rhinocerotidae (Perissodactyla) de Sansan. Mém Mus Natl Hist Nat, 203: 317-485 |
[25] | Hooijer D A, 1966. Miocene rhinoceroses of East Africa. Bull Br Mus (Nat Hist), Geol, 13: 119-190 |
[26] | Hwang Y T, Larivière S, 2003. Mydaus javanensis. Mamm Species: 1-3 |
[27] | Hwang Y T, Larivière S, 2004. Mydaus marchei. Mamm Species: 1-3 |
[28] |
Jiangzuo Q G, Wang S, Li C et al., 2019. New material of Gobicyon (Carnivora, Amphicyonidae, Haplocyoninae) from northern China and a review of Aktaucyonini evolution. Pap Palaeontol, 7: 307-327
DOI URL |
[29] |
Jiangzuo Q G, Sun D H, Flynn J J, 2020. Paleobiogeographic implications of additional Felidae (Carnivora, Mammalia) specimens from the Siwaliks. Hist Biol, 33: 1767-1780
DOI URL |
[30] |
Kaya F, Bibi F, Zliobaite I et al., 2018. The rise and fall of the Old World savannah fauna and the origins of the African savannah biome. Nat Ecol Evol, 2: 241-246
DOI PMID |
[31] | Khan A M, Cerdeño E, Akhtar M et al., 2014. New fossils of Gaindatherium (Rhinocerotidae, Mammalia) from the Middle Miocene of Pakistan. Turk J Earth Sci, 23: 452-461 |
[32] | Lartet E, 1851. Notice sur la colline de Sansan, suivie d’une récapitulation des diverses espèces d’animaux vertébrés fossiles, trouvés soit à Sansan, soit dans d’autres gisements du terrain tertiaire miocène dans le bassin souspyrénéen. Auch: J A Portes. 1-45 |
[33] |
Liu J, Li J J, Song C H et al., 2016. Palynological evidence for late Miocene stepwise aridification on the northeastern Tibetan Plateau. Clim Past, 12: 1473-1484
DOI URL |
[34] |
Liu S, Westbury M V, Dussex N et al., 2021. Ancient and modern genomes unravel the evolutionary history of the rhinoceros family. Cell, 184: 4874-4885
DOI PMID |
[35] |
Margaryan A, Sinding M H S, Liu S et al., 2020. Recent mitochondrial lineage extinction in the critically endangered Javan rhinoceros. Zool J Linn Soc, 190: 372-383
DOI URL |
[36] | Mein P, 1999. European Miocene mammal biochronology. In: Rösner G E, Heissig K eds. The Miocene Land Mammals of Europe. München: Verlag Dr. Friedrich Pfeil. 25-38 |
[37] | Pandolfi L, 2018. Evolutionary history of Rhinocerotina (Mammalia, Perissodactyla). Fossilia, 2018: 27-32 |
[38] |
Pandolfi L, 2023. Reassessing the phylogeny of Quaternary Eurasian Rhinocerotidae. J Quat Sci, 38(3): 291-294
DOI URL |
[39] |
Pandolfi L, Pierre-Olivier A, Bukhsianidze M et al., 2021. Northern Eurasian rhinocerotines (Mammalia, Perissodactyla) by the Pliocene-Pleistocene transition: phylogeny and historical biogeography. J Syst Palaeontol, 19: 1031-1057
DOI URL |
[40] | Pocock R I, 1939. The Fauna of British India, Including Ceylon and Burma: Mammalia 1. London: Taylor & Francis. 1-463 |
[41] | Pocock R I, 1941. The Fauna of British India, Including Ceylon and Burma: Mammalia 2. London: Taylor & Francis. 1-503 |
[42] | Qiu Z X, 1990. The Chinese Neogene mammalian biochronology: its correlation with the European Neogene mammalian zonation. In: Lindsay E H, Fahlbusch V, Mein P eds. European Neogene Mammal Chronology. New York: Springer. 527-556 |
[43] | Qiu Z X, Wang B Y, 2007. Paracerathere Fossils of China. Beijing: Science Press. 1-396 |
[44] | Qiu Z X, Ye J, Cao J X, 1988. A new species of Percrocuta from Tongxin, Ningxia. Vert PalAsiat, 26: 116-127 |
[45] | Qiu Z X, Qiu Z D, Deng T et al., 2013. Neogene land mammal stages/ages of China: Toward the goal to establish an Asian land mammal stage/age scheme. In: Wang X M, Flynn L J, Fortelius M eds. Neogene Terrestrial Mammalian Biostratigraphy and Chronology of Asia. New York: Columbia University Press. 29-90 |
[46] |
Tong H W, 2012. Evolution of the non-Coelodonta dicerorhine lineage in China. C R Palevol, 11: 555-562
DOI URL |
[47] |
Tong H W, Guérin C, 2009. Early Pleistocene Dicerorhinus sumatrensis remains from the Liucheng Gigantopithecus Cave, Guangxi, China. Geobios-Lyon, 42: 525-539
DOI URL |
[48] |
Van Couvering J A, Delson E, 2020. African land mammal ages. J Vert Paleont, 40: 5, e1803340, doi: 10.1080/02724634.2020.1803340
DOI |
[49] | Wang S Q, Zong L, Yang Q et al., 2016. Biostratigraphic subdividing of the Neogene Dingjiaergou mammalian fauna, Tongxin County, Ningxia Province, and its background for the uplift of the Tibetan Plateau. Quat Sci, 36: 789-809 |
[50] |
Wang X M, Qiu Z X, Opdyke N D, 2003. Litho-, bio-, and magnetostratigraphy and paleoenvironment of Tunggur Formation (Middle Miocene) in central Inner Mongolia, China. Am Mus Novit, 3411: 1-31
DOI URL |
[51] | Werdelin L, Sanders W J, 2010. Rhinocerotidae. In: Werdelin L ed. Cenozoic Mammals of Africa. Oakland: University of California Press. 675-690 |
[52] |
Westerhold T, Marwan N, Drury A J et al., 2020. An astronomically dated record of Earth’s climate and its predictability over the last 66 million years. Science, 369: 1383-1387
DOI PMID |
[53] |
Xiong W Y, 2022. New species of Percrocuta (Carnivora, Hyaenidae) from the early Middle Miocene of Tongxin, China. Hist Biol, 35(5): 1-22
DOI URL |
[54] |
Zachos J, Pagani M, Sloan L et al., 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292: 686-693
DOI PMID |
[55] |
Zhang Z G, Han W, Fang X et al., 2013. Late Miocene-Pleistocene aridification of Asian inland revealed by geochemical records of lacustrine-fan delta sediments from the western Tarim Basin, NW China. Palaeogeogr Palaeoclimatol Palaeoecol, 377: 52-61
DOI URL |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||