Welcome to Visited Vertebrata Palasiatica, Today is

A new specimen of Parabohaiornis martini (Avialae: Enantiornithes) sheds light on early avian skull evolution

  • Min WANG
Expand
  • Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences Beijing 100044

Received date: 2023-01-04

  Online published: 2023-02-17

Abstract

The Enantiornithes is the most speciose clade of Mesozoic avialans with over 60 named taxa reported from most continents that span the whole Cretaceous. Most of the fossil remains of this clade, as well as those of other early diverging avialans are preserved in two-dimensions. This complicates efforts to extract detailed anatomical information from the skull, in which the composite elements are delicate and thus not easily observable through conventional methods. The scarcity of well-preserved early avialan skulls, as well as the limited number of specimens that have been analyzed using computed tomography scanning, consequently circumscribes a large morphological gap in the fossil record during the transition from the heavy and akinetic dinosaurian skull to the lightweight and kinetic bird skull. Here, we present a three-dimensional digital reconstruction of the skull and part of the cervical vertebrae of a new specimen of the enantiornithine Parabohaiornis martini from the Early Cretaceous of China. Our results demonstrate that Parabohaiornis retains the plesiomorphic non-avialan dinosaurian temporal and palatal configurations, reinforcing the recent hypothesis that the temporal and palatal regions are evolutionarily conservative and that the akinetic skull has been conserved well into diversification of early branching avialans.

Cite this article

Min WANG . A new specimen of Parabohaiornis martini (Avialae: Enantiornithes) sheds light on early avian skull evolution[J]. Vertebrata Palasiatica, 2023 , 61(2) : 90 -107 . DOI: 10.19615/j.cnki.2096-9899.230217

References

[1] Barsbold R, 1974. Saurornithoididae, a new family of small theropod dinosaurs from central Asia and North America. Palaeontol Pol, 30: 5-22
[2] Barsbold R, Osmólska H, 1999. The skull of Velociraptor (Theropoda) from the Late Cretaceous of Mongolia. Acta Palaeontol Pol, 44: 189-219
[3] Baumel J J, Witmer L M, Cambridge, 1993. Osteologia. In: Baumel J J, King A S, Breazile J E et al. eds. Handbook of Avian Anatomy: Nomina Anatomica Avium, 2nd ed. UK: Nuttall Ornithological Club. 45-132
[4] Bertelli S, Giannini N P, Ksepka D T, 2006. Redescription and phylogenetic position of the Early Miocene penguin Paraptenodytes antarcticus from Patagonia. Am Mus Novit, 36: 1-36
[5] Bock W J, 1964. Kinetics of the avian skull. J Morphol, 114: 1-41
[6] Chiappe L M, Ji S A, Ji Q, 2007. Juvenile birds from the Early Cretaceous of China: implications for enantiornithine ontogeny. Am Mus Novit, 3594: 1-46
[7] Chiappe L M, Meng Q J, Serrano F et al., 2019. New Bohaiornis-like bird from the Early Cretaceous of China: enantiornithine interrelationships and flight performance. PeerJ, 7: e7846
[8] Currie P J, 1995. New information on the anatomy and relationships of Dromaeosaurus albertensis (Dinosauria: Theropoda). J Vert Paleont, 15: 576-591
[9] Currie P J, Zhao X J, 1993. A new carnosaur (Dinosauria, Theropoda) from the Jurassic of Xinjiang, People’s Republic of China. Can J Earth Sci, 30: 2037-2081
[10] El?anowski A, 1991. New observations of the skull of Hesperornis with reconstructions of the bony palate and otic region. Postilla, 207: 1-20
[11] El?anowski A, Stidham T A, 2011. A galloanserine quadrate from the Late Cretaceous Lance Formation of Wyoming. Auk, 128: 138-145
[12] El?anowski A, Wellnhofer P, 1996. Cranial morphology of Archaeopteryx: evidence from the seventh skeleton. J Vert Paleont, 16: 81-94
[13] Gingerich P D, 1976. Evolutionary significance of the Mesozoic toothed birds. Smithson Contrib Paleobiol, 27: 23-33
[14] Gussekloo S W S, Berthaume M A, Pulaski D R et al., 2017. Functional and evolutionary consequences of cranial fenestration in birds. Evolution, 71: 1327-1338
[15] Hendrickx C, Araújo R, Mateus O, 2015. The non-avian theropod quadrate I: standardized terminology with an overview of the anatomy and function. PeerJ, 3: e1245
[16] Holliday C M, Witmer L M, 2008. Cranial kinesis in dinosaurs: intracranial joints, protractor muscles, and their significance for cranial evolution and function in diapsids. J Vert Paleont, 28: 1073-1088
[17] Hu D Y, Li L, Hou L H et al., 2011. A new enantiornithine bird from the Lower Cretaceous of western Liaoning, China. J Vert Paleont, 31: 154-161
[18] Hu H, O’Connor J K, Wang M et al., 2020. New anatomical information on the bohaiornithid Longusunguis and the presence of a plesiomorphic diapsid skull in Enantiornithes. J Syst Palaeontol, 18: 1481-1495
[19] Li Z H, Wang M, Stidham T A et al., 2023. Decoupling the skull and skeleton in a Cretaceous bird with unique appendicular morphologies. Nat Ecol Evol, 7: 20-31
[20] Livezey B C, Zusi R L, 2006. Higher-order phylogeny of modern birds (Theropoda, Aves: Neornithes) based on comparative anatomy: I. methods and characters. Bull Carnegie Mus Nat Hist, 37: 1-544
[21] Livezey B C, Zusi R L, 2007. Higher-order phylogeny of modern birds (Theropoda, Aves: Neornithes) based on comparative anatomy: II. analysis and discussion. Zool J Linn Soc, 149: 1-95
[22] Lovette I J, Fitzpatrick J W, 2016. Handbook of Bird Biology, 3rd ed. Chichester: John Wiley & Sons. 1-716
[23] Lucas F A, 1903. Notes on the osteology and relationship of the fossil birds of the genera Hesperornis, Hargeria, Baptornis, and Diatryma. Proc US Natn Mus, 26: 545-556
[24] McDowell S, 1948. The bony palate of birds. Part I. The Palaeognathae. Auk, S: 520-549
[25] Norell M A, Clark J M, Turner A H et al., 2006. A new dromaeosaurid theropod from Ukhaa Tolgod (?mn?gov, Mongolia). Am Mus Novit, 3545: 1-51
[26] O’Connor J K, Chiappe L M, 2011. A revision of enantiornithine (Aves: Ornithothoraces) skull morphology. J Syst Palaeontol, 9: 135-157
[27] O’Connor J K, Zhang Y G, Chiappe L M et al., 2013. A new enantiornithine from the Yixian Formation with the first recognized avian enamel specialization. J Vert Paleont, 33: 1-12
[28] O’Connor P M, Turner A H, Groenke J R et al., 2020. Late Cretaceous bird from Madagascar reveals unique development of beaks. Nature, 588: 272-276
[29] Ostrom J H, 1969. Osteology of Deinonychus antirrhopus, an unusual theropod from the Lower Cretaceous of Montana. Bull Peabody Mus Nat Hist, 30: 1-165
[30] Rauhut O W M, 2003. The interrelationships and evolution of basal theropods. Spec Pap Palaeontol, 69: 1-213
[31] Rauhut O W M, 2014. New observations on the skull of Archaeopteryx. Pal?ontol Z, 88: 211-221
[32] Stidham T A, O’Connor J K, 2021. The evolutionary and functional implications of the unusual quadrate of Longipteryx chaoyangensis (Avialae: Enantiornithes) from the Cretaceous Jehol Biota of China. J Anat, 239: 1066-1074
[33] Sullivan C, Xu X, 2017. Morphological diversity and evolution of the jugal in dinosaurs. Anat Rec, 300: 30-48
[34] Wang M, Hu H, 2017. A comparative morphological study of the jugal and quadratojugal in early birds and their dinosaurian relatives. Anat Rec, 300: 62-75
[35] Wang M, Zhou Z H, O’Connor J K et al., 2014a. A new diverse enantiornithine family (Bohaiornithidae fam. nov.) from the Lower Cretaceous of China with information from two new species. Vert PalAsiat, 52: 31-76
[36] Wang M, O’Connor J K, Zhou Z H, 2014b. A new robust enantiornithine bird from the Lower Cretaceous of China with scansorial adaptations. J Vert Paleont, 34: 657-671
[37] Wang M, Stidham T A, Li Z H et al., 2021. Cretaceous bird with dinosaur skull sheds light on avian cranial evolution. Nat Commun, 12: 3890
[38] Wang M, Stidham T A, O’Connor J K et al., 2022. Insight into the evolutionary assemblage of cranial kinesis from a Cretaceous bird. eLife, 11: e81337
[39] Wang X R, O’Connor J K, Zhao B et al., 2010. New species of Enantiornithes (Aves: Ornithothoraces) from the Qiaotou Formation in Northern Hebei, China. Acta Geol Sin, 84: 247-256
[40] Weishampel B D, Dodson P, Osmólska H, 2004. The Dinosauria, 2nd ed. Berkeley: University of California Press. 1-880
[41] Witmer L, 1997. Craniofacial air sinus systems. In: Currie P J, Padian K eds. Encyclopedia Dinosauria. New York: Academic Press. 1-159
[42] Yu Z Q, Wang M, Li Y et al., 2021. New geochronological constraints for the Lower Cretaceous Jiufotang Formation in Jianchang basin, NE China, and their implications for the late Jehol Biota. Palaeogeogr Palaeoclimatol Palaeoecol, 583: 110657
[43] Zhou Z H, Luis M C, Zhang F C, 2005. Anatomy of the Early Cretaceous bird Eoenantiornis buhleri (Aves : Enantiornithes) from China. Can J Earth Sci, 42: 1331-1338
[44] Zhou Z H, Clarke J, Zhang F C, 2008. Insight into diversity, body size and morphological evolution from the largest Early Cretaceous enantiornithine bird. J Anat, 212: 565-577
[45] Zhang Z H, Chiappe L M, Han G et al., 2013. A large bird from the Early Cretaceous of China: new information on the skull of enantiornithines. J Vert Paleont, 33: 1176-1189
[46] Zusi R L, 1984. A functional and evolutionary analysis of rhynchokinesis in birds. Smithson Contrib Zool, 395: 1-40
Outlines

/