Welcome to Visited Vertebrata Palasiatica, Today is

Cranial anatomy of Anchiornis huxleyi (Theropoda: Paraves) sheds new light on bird skull evolution

  • WANG Min ,
  • WANG Xiao-Li ,
  • ZHENG Xiao-Ting ,
  • ZHOU Zhong-He
Expand
  • 1 Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences Beijing 100044
    2 Institute of Geology and Paleontology, Linyi University Linyi, Shandong 276005
    3 Shandong Tianyu Museum of Nature Pingyi, Shandong 273300
WANG Min, wangmin@ivpp.ac.cn

Received date: 2024-10-29

  Online published: 2024-12-25

Abstract

The origin of birds from theropod dinosaurs, by any measures, is the most eye-catching evolutionary transition in the history of life, which encompasses numerous extensive morphological and biological changes. Compared to postcranium, little progress has been made regarding the evolutionary assemblage of the birds’ skull, because of few detailed early records of cranial materials of stem lineages. Anchiornis is the oldest known record of the Paraves (~160 Ma), the most inclusive clade that contains all living birds but not Caudipteryx or Epidexipteryx. With hundreds of known specimens, Anchiornis constitutes an ideal taxon for investigating morphological modifications across the theropod-bird transition, but its cranial morphology remains enigmatic. Here we present in-depth description of the cranial morphology of Anchiornis based on three-dimensional reconstruction of a well-preserved specimen, including elements from the temporal and palatal regions that are poorly recognized previously. Our study shows that Anchiornis retains the plesiomorphic dinosaurian condition in having a diapsid akinetic skull. The mixture of cranial characters, shared with dromaeosaurids, troodontids, and stemward avialans, present in Anchiornis demonstrates the complex history of early avialan cranial evolution.

Cite this article

WANG Min , WANG Xiao-Li , ZHENG Xiao-Ting , ZHOU Zhong-He . Cranial anatomy of Anchiornis huxleyi (Theropoda: Paraves) sheds new light on bird skull evolution[J]. Vertebrata Palasiatica, 2025 , 63(1) : 20 -42 . DOI: 10.19615/j.cnki.2096-9899.241225

References

[1] Agnolin F L, Novas F E, 2013. Avian Ancestors: A Review of the Phylogenetic Relationships of the Theropods Unenlagiidae, Microraptoria, Anchiornis and Scansoriopterygidae. Berlin: Springer-Verlag. 1-96
[2] Barsbold R, Osmólska H, 1999. The skull of Velociraptor (Theropoda) from the late Cretaceous of Mongolia. Acta Palaeontol Pol, 44: 189-219
[3] Baumel J J, Witmer L M, 1993. Osteologia. In: Baumel J J, King A S, Breazile J E et al. eds. Handbook of Avian Anatomy: Nomina Anatomica Avium, 2nd ed. Cambridge: Nuttall Ornithological Club. 45-132
[4] Brusatte S L, Lloyd G T, Wang S C et al., 2014. Gradual assembly of avian body plan culminated in rapid rates of evolution across the dinosaur-bird transition. Curr Biol, 24: 2386-2392
[5] Brusatte S L, O’Connor J K, Jarvis E D, 2015. The origin and diversification of birds. Curr Biol, 25: R888-R898
[6] Clarke J A, Middleton K M, 2008. Mosaicism, modules, and the evolution of birds: results from a Bayesian approach to the study of morphological evolution using discrete character data. Syst Biol, 57: 185-201
[7] Currie P J, 1987. Bird-like characteristics of the jaws and teeth of troodontid theropods (Dinosauria, Saurischia). J Vert Paleont, 7: 72-81
[8] Currie P J, 1995. New information on the anatomy and relationships of Dromaeosaurus albertensis (Dinosauria: Theropoda). J Vert Paleont, 576-591
[9] Currie P J, Zhao X, 1993. A new carnosaur (Dinosauria, Theropoda) from the Jurassic of Xinjiang, People’s Republic of China. Can J Earth Sci, 30: 2037-2081
[10] Eddy D R, Clarke J A, 2011. New information on the cranial anatomy of Acrocanthosaurus atokensis and its implications for the phylogeny of Allosauroidea (Dinosauria: Theropoda). PLoS One, 6: e17932
[11] El?anowski A, Stidham T A, 2011. A galloanserine quadrate from the Late Cretaceous Lance Formation of Wyoming. Auk, 128: 138-145
[12] El?anowski A, Wellnhofer P, 1996. Cranial morphology of Archaeopteryx: evidence from the seventh skeleton. J Vert Paleont, 16: 81-94
[13] Field D J, Hanson M, Burnham D et al., 2018. Complete Ichthyornis skull illuminates mosaic assembly of the avian head. Nature, 557: 96-100
[14] Godefroit P, Cau A, Hu D Y et al., 2013. A Jurassic avialan dinosaur from China resolves the early phylogenetic history of birds. Nature, 498: 359-362
[15] Goloboff P A, Catalano S A, 2016. TNT version 1.5, including a full implementation of phylogenetic morphometrics. Cladistics, 32: 221-238
[16] Hendrickx C, Araújo R, Mateus O, 2015. The non-avian theropod quadrate I: standardized terminology with an overview of the anatomy and function. PeerJ, 3: e1245
[17] Holliday C M, Witmer L M, 2008. Cranial kinesis in dinosaurs: intracranial joints, protractor muscles, and their significance for cranial evolution and function in diapsids. J Vert Paleont, 28: 1073-1088
[18] Hu D Y, Hou L H, Zhang L J et al., 2009. A pre-Archaeopteryx troodontid theropod from China with long feathers on the metatarsus. Nature, 461: 640-643
[19] Hu H, Sansalone G, Wroe S et al., 2019. Evolution of the vomer and its implications for cranial kinesis in Paraves. Proc Nat Acad Sci USA, 116: 19571-19578
[20] Hu H, Wang Y, Fabbri M et al., 2022. Cranial osteology and palaeobiology of the Early Cretaceous bird Jeholornis prima (Aves: Jeholornithiformes). Zool J Linn Soc, 198: 93-112
[21] Kundrát M, Nudds J, Kear B P et al., 2019. The first specimen of Archaeopteryx from the Upper Jurassic M?rnsheim Formation of Germany. Hist Biol, 31: 3-63
[22] Li Z H, Wang M, Stidham T A et al., 2023. Decoupling the skull and skeleton in a Cretaceous bird with unique appendicular morphologies. Nat Ecol Evol, 7: 20-31
[23] Madsen J H, 1976. Allosaurus fragilis: a revised osteology. Utah Geol Min Surv Bull, 109: 1-163
[24] Makovicky P J, Norell M A, 2004. Troodontidae. In: David B W, Peter D, Halszka O eds. The Dinosauria, 2nd ed. Berkeley: University of California Press. 184-195
[25] Makovicky P J, Norell M A, Clark J M et al., 2003. Osteology and relationships of Byronosaurus jaffei (Theropoda: Troodontidae). Am Mus Novit, 2003: 1-32
[26] Mayr G, Pohl B, Peters D S, 2005. A well-preserved Archaeopteryx specimen with theropod features. Science, 310: 1483-1486
[27] Norell M A, Makovicky P J, 2004. Dromaosauridae. In: David B W, Peter D, Halszka O eds. The Dinosauria, 2nd ed. Berkeley: University of California Press. 196-209
[28] Norell M A, Clark J M, Turner A H et al., 2006. A new dromaeosaurid theropod from Ukhaa Tolgod (?mn?gov, Mongolia). Am Mus Novit, 3545: 1-51
[29] Norell M A, Makovicky P J, Bever G S et al., 2009. A review of the Mongolian Cretaceous dinosaur saurornithoides (Troodontidae: Theropoda). Am Mus Novit, 3654: 1-63
[30] O’Connor J K, Chiappe L M, 2011. A revision of enantiornithine (Aves: Ornithothoraces) skull morphology. J Syst Palaeontol, 9: 135-157
[31] Ostrom J H, 1969. Osteology of Deinonychus antirrhopus, an unusual theropod from the Lower Cretaceous of Montana. Bull Peabody Mus Nat Hist, 30: 1-165
[32] Pei R, Li Q, Meng Q et al., 2017a. New specimens of Anchiornis huxleyi (Theropoda: Paraves) from the Late Jurassic of northeastern China. Bull Am Mus Nat Hist, 411: 1-67
[33] Pei R, Norell M A, Barta D E et al., 2017b. Osteology of a new Late Cretaceous troodontid specimen from Ukhaa Tolgod, ?mn?govi Aimag, Mongolia. Am Mus Novit, 3889: 1-47
[34] Rauhut O W M, Foth C, 2020. The origin of birds: current consensus, controversy, and the occurrence of feathers. In: Foth C, Rauhut O W M eds. The Evolution of Feathers: From Their Origin to the Present. Cham: Springer International Publishing. 27-45
[35] Rauhut O W M, Foth C, Tischlinger H, 2018. The oldest Archaeopteryx (Theropoda: Avialiae): a new specimen from the Kimmeridgian/Tithonian boundary of Schamhaupten, Bavaria. PeerJ, 6: e4191
[36] Stidham T A, O’Connor J K, 2021. The evolutionary and functional implications of the unusual quadrate of Longipteryx chaoyangensis (Avialae: Enantiornithes) from the Cretaceous Jehol Biota of China. J Anat, 239: 1066-1074
[37] Sullivan C, Xu X, 2017. Morphological diversity and evolution of the jugal in dinosaurs. Anat Rec, 300: 30-48
[38] Torres C R, Norell M A, Clarke J A, 2021. Bird neurocranial and body mass evolution across the end-Cretaceous mass extinction: the avian brain shape left other dinosaurs behind. Sci Adv, 7: eabg7099
[39] Tsuihiji T, Barsbold R, Watabe M et al., 2014. An exquisitely preserved troodontid theropod with new information on the palatal structure from the Upper Cretaceous of Mongolia. Naturwissenschaften, 101: 131-142
[40] Turner A H, Makovicky P J, Norell M A, 2012. A review of dromaeosaurid systematics and paravian phylogeny. Bull Am Mus Nat Hist, 371: 1-206
[41] Turner A H, Montanari S, Norell M A, 2021. A new dromaeosaurid from the Late Cretaceous Khulsan locality of Mongolia. Am Mus Novit, 3965: 1-48
[42] Wang M, 2023. A new specimen of Parabohaiornis martini (Avialae: Enantiornithes) sheds light on early avian skull evolution. Vert PalAsiat, 61: 96-107
[43] Wang M, Hu H, 2017. A comparative morphological study of the jugal and quadratojugal in early birds and their dinosaurian relatives. Anat Rec, 300: 62-75
[44] Wang M, Zhou Z H, 2017. The evolution of birds with implications from new fossil evidences. In: Maina N J ed. The Biology of the Avian Respiratory System. Heidelberg: Springer International Publishing. 1-26
[45] Wang M, O’Connor J K, Zhou Z H, 2019. A taxonomical revision of the Confuciusornithiformes (Aves: Pygostylia). Vert PalAsiat, 57: 1-37
[46] Wang M, Stidham T A, Li Z H et al., 2021. Cretaceous bird with dinosaur skull sheds light on avian cranial evolution. Nat Commun, 12: 3890
[47] Wang M, Stidham T A, O’Connor J K et al., 2022. Insight into the evolutionary assemblage of cranial kinesis from a Cretaceous bird. eLife, 11: e81337
[48] Weishampel B D, Dodson P, Osmólska H, 2004. The Dinosauria, 2nd ed. Berkeley: University of California Press. 1-880
[49] Xu L, Wang M, Chen R et al., 2023. A new avialan theropod from an emerging Jurassic terrestrial fauna. Nature, 621: 336-343
[50] Xu X, Wu X, 2001. Cranial morphology of Sinornithosaurus millenii Xu et al. 1999 (Dinosauria: Theropoda: Dromaeosauridae) from the Yixian Formation of Liaoning, China. Can J Earth Sci, 38: 1739-1752
[51] Xu X, Norell M A, Wang X et al., 2002. A basal troodontid from the Early Cretaceous of China. Nature, 415: 780-784
[52] Xu X, Zhao Q, Norell M et al., 2009. A new feathered maniraptoran dinosaur fossil that fills a morphological gap in avian origin. Chinese Sci Bull, 54: 430-435
[53] Xu X, You H L, Du K et al., 2011. An Archaeopteryx-like theropod from China and the origin of Avialae. Nature, 475: 465-470
[54] Xu X, Zhou Z H, Dudley R et al., 2014. An integrative approach to understanding bird origins. Science, 346: 1253293
[55] Xu X, Pittman M, Sullivan C et al., 2015. The taxonomic status of the Late Cretaceous dromaeosaurid Linheraptor exquisitus and its implications for dromaeosaurid systematics. Vert PalAsiat, 53: 29-62
[56] Xu X, Currie P, Pittman M et al., 2017. Mosaic evolution in an asymmetrically feathered troodontid dinosaur with transitional features. Nat Commun, 8: 14972
[57] Yin Y, Pei R, Zhou C, 2018. Cranial morphology of Sinovenator changii (Theropoda: Troodontidae) on the new material from the Yixian Formation of western Liaoning, China. PeerJ, 6: e4977
[58] Zheng X T, Wang X L, Sullivan C et al., 2018. Exceptional dinosaur fossils reveal early origin of avian-style digestion. Sci Rep, 8: 14217
[59] Zhou Y C, Sullivan C, Zhang F C, 2019. Negligible effect of tooth reduction on body mass in Mesozoic birds. Vert PalAsiat, 57: 38-50
[60] Zhou Z H, 2004. The origin and early evolution of birds: discoveries, disputes, and perspectives from fossil evidence. Naturwissenschaften, 91: 455-471
[61] Zhou Z H, Wang Y, 2017. Vertebrate assemblages of the Jurassic Yanliao Biota and the Early Cretaceous Jehol Biota: comparisons and implications. Palaeoworld, 26: 241-252
[62] Zusi R L, Livezey B C, 2006. Variation in the os palatinum and its structural relation to the palatum osseum of birds (Aves). Ann Carnegie Mus, 75: 137-180
Outlines

/