The elephantimorph proboscideans, Serridentinus gobiensis Osborn & Granger, 1932, and Miomastodon tongxinensis Chen, 1978, from the Middle Miocene of northern China, were revised as Zygolophodon gobiensis (Osborn & Granger, 1932). However, their phylogenetic positions are still being debated because of their intermediate morphology between the typical bunodont (Gomphotheriidae) and zygodont (Mammutidae) elephantimorphs. In the present paper, we compare their dental and mandibular morphology with that of the Eurasian Z. turicensis, Gomphotherium subtapiroideum, and G. tassyi, as well as the North American Mio. merriami and G. productum. It appears that S. gobiensis and Mio. tongxinensis share with Mio. merriami the slightly more bunodont molar morphology than that of Z. turicensis, e.g., the thicker enamel, thicker pretrite crescentoids, higher interlophid enamel pillars in buccal view, and the narrower contour majorly caused by the narrower posttrite half loph(id)s. S. gobiensis and Mio. merriami also possess an “erected oval cross-sectioned mandibular tusk”, in which the cross-section is mediolaterally compressed (dorsoventral diameter being larger than the mediolateral one). Whereas, in Z. turicensis and G. productum, the mandibular tusk is “laid oval cross-sectioned”, in which the cross-section is dorsoventrally compressed (dorsoventral diameter is smaller than the mediolateral one). Therefore, it is reasonable to revive the genus Miomastodon Osborn, 1922, which contains the species that were previously attributed to Zygolophodon, but they have relatively bunodont molar morphology (i.e., the robust type of the Z. turicensis group). The mandibular tusk with erected oval cross-section seems to be a synapomorphy of Miomastodon species. Furthermore, the molar morphology of G. subtapiroideum and G. tassyi also exhibits intermediate status between the typical bunodonts and zygodonts. However, the mandibular symphysis of G. subtapiroideum and G. tassyi is stronger than that of Miomastodon, and the mandibular tusk is pyriform cross-sectioned. The validity of Miomastodon and G. subtapiroideum/tassyi obscures the boundary between the Gomphotheriidae and Mammutidae, and suggests that the evolutions of the Gomphotheriidae and Mammutidae are deeply involved in with each other, rather than straightforwardly detached. This phenomenon has been revealed by a collagen sequence analysis among Notiomastodon, Mammut, and extant elephants, which should be further studied.